zoukankan      html  css  js  c++  java
  • [OpenCV] sift demo

    运行环境:vs2012+opencv320

    sift 需要的头文件为 <opencv2/xfeatures2d.hpp>

    #include <opencv2/opencv.hpp>
    #include <opencv2/xfeatures2d.hpp>
    
    using namespace cv;
    using namespace std;
    
    bool refineMatchesWithHomography(
    		const std::vector<cv::KeyPoint>& queryKeypoints,
    		const std::vector<cv::KeyPoint>& trainKeypoints,
    		float reprojectionThreshold, 
    		std::vector<cv::DMatch>& matches,
    		cv::Mat& homography) 
    {
    	const int minNumberMatchesAllowed = 8;
     
    	if (matches.size() < minNumberMatchesAllowed)
    		return false;
     
    	// Prepare data for cv::findHomography
    	std::vector<cv::Point2f> srcPoints(matches.size());
    	std::vector<cv::Point2f> dstPoints(matches.size());
     
    	for (size_t i = 0; i < matches.size(); i++) {
    		srcPoints[i] = trainKeypoints[matches[i].trainIdx].pt;
    		dstPoints[i] = queryKeypoints[matches[i].queryIdx].pt;
    	}
     
    	// Find homography matrix and get inliers mask
    	std::vector<unsigned char> inliersMask(srcPoints.size());
    	homography = cv::findHomography(srcPoints, dstPoints, CV_FM_RANSAC,reprojectionThreshold, inliersMask);
     
    	std::vector<cv::DMatch> inliers;
    	for (size_t i = 0; i < inliersMask.size(); i++) {
    		if (inliersMask[i])
    			inliers.push_back(matches[i]);
    	}
     
    	matches.swap(inliers);
    	return matches.size() > minNumberMatchesAllowed;
    }
    
    
    bool comp(vector<DMatch>& a,vector<DMatch>& b)
    {
    	return a[0].distance/a[1].distance < b[0].distance/b[1].distance;
    }
    
    void main()
    {
    	Ptr<xfeatures2d::SIFT>feature=xfeatures2d::SIFT::create();
    
    	Mat input1 = imread("sift_img\16.png",1);
    	Mat input2 = imread("sift_img\11.png",1);
    
    	vector<KeyPoint>kp1,kp2;
    	Mat des1,des2;
    	Mat output1,output2;
    
    	feature->detectAndCompute(input1,cv::noArray(),kp1,des1);
    	drawKeypoints(input1,kp1,output1);
    
    	feature->detectAndCompute(input2,cv::noArray(),kp2,des2);
    	drawKeypoints(input2,kp2,output2);
    
    	vector<DMatch>matches;
    	vector<vector<DMatch> >Dmatches;
        Ptr<cv::DescriptorMatcher> matcher_knn = new BFMatcher();
    	Ptr<cv::DescriptorMatcher> matcher = new BFMatcher(NORM_L2,true);
        matcher->match(des1,des2,matches);
    
    	matcher_knn->knnMatch(des1,des2,Dmatches,2);
    	sort(Dmatches.begin(),Dmatches.end(),comp);
    
    	vector<DMatch> good;
    	for(int i=0;i<Dmatches.size();i++){
    		if(Dmatches[i][0].distance < 0.75*Dmatches[i][1].distance)
    			good.push_back(Dmatches[i][0]);
    	}
    
    	Mat imResultOri;
    	drawMatches(output1, kp1, output2, kp2, matches, imResultOri,CV_RGB(0,255,0), CV_RGB(0,255,0));
    
    	Mat matHomo;
    	refineMatchesWithHomography(kp1, kp2, 3, matches, matHomo);
    	cout << "[Info] Homography T : " << endl << matHomo << endl;
    
    	Mat imResult;
    	drawMatches(output1, kp1, output2, kp2, matches, imResult,CV_RGB(0,255,0), CV_RGB(0,255,0));
    
    	Mat Mgood;
    	drawMatches(output1, kp1, output2, kp2, good, Mgood,CV_RGB(0,255,0), CV_RGB(0,255,0));
    
    	imshow("ransc",imResult);
    	imshow("knn_match",Mgood);
    	waitKey(0);
    	
    	return;
    }
    

     

  • 相关阅读:
    LVM(逻辑卷管理器)部署、扩容、缩小
    部署磁盘阵列
    docker安装
    Linux基础命令
    awk补充
    awk
    shell脚本--grep与正则表达式
    文本处理工具 -wc、cut、sort、uniq的用法及参数
    Shell脚本编程原理
    重定向与管道符
  • 原文地址:https://www.cnblogs.com/P3nguin/p/9679474.html
Copyright © 2011-2022 走看看