zoukankan      html  css  js  c++  java
  • (六)6.9 Neurons Networks softmax regression

    SoftMax回归模型,是logistic回归在多分类问题的推广,即现在logistic回归数据中的标签y不止有0-1两个值,而是可以取k个值,softmax回归对诸如MNIST手写识别库等分类很有用,该问题有0-9 这10个数字,softmax是一种supervised learning方法。

    在logistic中,训练集由 	extstyle m 个已标记的样本构成:{ (x^{(1)}, y^{(1)}), ldots, (x^{(m)}, y^{(m)}) } ,其中输入特征x^{(i)} in Re^{n+1}(特征向量 	extstyle x 的维度为 	extstyle n+1,其中 	extstyle x_0 = 1 对应截距项 ), logistic 回归是针对二分类问题的,因此类标记 y^{(i)} in {0,1}。假设函数(hypothesis function) 如下:

    egin{align}
h_	heta(x) = frac{1}{1+exp(-	heta^Tx)},
end{align}

    损失函数为负log损失函数:

    
egin{align}
J(	heta) = -frac{1}{m} left[ sum_{i=1}^m y^{(i)} log h_	heta(x^{(i)}) + (1-y^{(i)}) log (1-h_	heta(x^{(i)})) 
ight]
end{align}

    找到使得损失函数最小时的模型参数 	extstyle 	heta ,带入假设函数即可求解模型。

    在softmax回归中,对于训练集{ (x^{(1)}, y^{(1)}), ldots, (x^{(m)}, y^{(m)}) } 中的类标 	extstyle y 可以取 	extstyle k 个不同的值(而不是 2 个),即有 y^{(i)} in {1, 2, ldots, k}(注意不是由0开始), 在MNIST中有K=10个类别。

    在softmax回归中,对于输入x,要计算x分别属于每个类别j的概率	extstyle p(y=j | x),即求得x分别属于每一类的概率,因此假设函数要设定为输出一个k维向量,每个维度代表x被分为每个类别的概率,假设函数 	extstyle h_{	heta}(x) 形式如下:

    
egin{align}
h_	heta(x^{(i)}) =
egin{bmatrix}
p(y^{(i)} = 1 | x^{(i)}; 	heta) \
p(y^{(i)} = 2 | x^{(i)}; 	heta) \
vdots \
p(y^{(i)} = k | x^{(i)}; 	heta)
end{bmatrix}
=
frac{1}{ sum_{j=1}^{k}{e^{ 	heta_j^T x^{(i)} }} }
egin{bmatrix}
e^{ 	heta_1^T x^{(i)} } \
e^{ 	heta_2^T x^{(i)} } \
vdots \
e^{ 	heta_k^T x^{(i)} } \
end{bmatrix}
end{align}

    请注意 frac{1}{ sum_{j=1}^{k}{e^{ 	heta_j^T x^{(i)} }} } 这一项对概率分布进行归一化,使得所有概率之和为 1 。当类别数 	extstyle k = 2 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当 	extstyle k = 2 时,softmax 回归的假设函数为:
egin{align}
h_	heta(x) &=

frac{1}{ e^{	heta_1^Tx}  + e^{ 	heta_2^T x^{(i)} } }
egin{bmatrix}
e^{ 	heta_1^T x } \
e^{ 	heta_2^T x }
end{bmatrix}
end{align}
,对该式进行化简得到:

    
egin{align}
h(x) &=

frac{1}{ e^{vec{0}^Tx}  + e^{ (	heta_2-	heta_1)^T x^{(i)} } }
egin{bmatrix}
e^{ vec{0}^T x } \
e^{ (	heta_2-	heta_1)^T x }
end{bmatrix} \


&=
egin{bmatrix}
frac{1}{ 1 + e^{ (	heta_2-	heta_1)^T x^{(i)} } } \
frac{e^{ (	heta_2-	heta_1)^T x }}{ 1 + e^{ (	heta_2-	heta_1)^T x^{(i)} } }
end{bmatrix} \

&=
egin{bmatrix}
frac{1}{ 1  + e^{ (	heta_2-	heta_1)^T x^{(i)} } } \
1 - frac{1}{ 1  + e^{ (	heta_2-	heta_1)^T x^{(i)} } } \
end{bmatrix}
end{align}

    另 	extstyle 	heta'来表示	extstyle 	heta_2-	heta_1,我们就会发现 softmax 回归器预测其中一个类别的概率为 	extstyle frac{1}{ 1  + e^{ (	heta')^T x^{(i)} } },另一个类别概率的为 	extstyle 1 - frac{1}{ 1 + e^{ (	heta')^T x^{(i)} } },这与 logistic回归是一致的。

    其中 	heta_1, 	heta_2, ldots, 	heta_k in Re^{n+1} 是模型的参数。把参数 	extstyle 	heta 表示为矩阵形式有, 	extstyle 	heta 是一个 	extstyle k 	imes(n+1) 的矩阵,该矩阵是将 	heta_1, 	heta_2, ldots, 	heta_k 按行罗列起来得到的:

    
	heta = egin{bmatrix}
mbox{---} 	heta_1^T mbox{---} \
mbox{---} 	heta_2^T mbox{---} \
vdots \
mbox{---} 	heta_k^T mbox{---} \
end{bmatrix}

    有个假设函数(Hypothesis Function),下面来看代价函数,根据代价函数求解出最优参数值带入假设函数即可求得最终的模型,先引入函数	extstyle 1{cdot},对于该函数有:

    	extstyle 1{值为真的表达式 	extstyle }=1    	extstyle 1{ 值为假的表达式 	extstyle }=0

    举例来说,表达式 	extstyle 1{2+2=4} 的值为1 ,	extstyle 1{1+1=5}的值为 0 。

    则softmax的损失函数为:

    
egin{align}
J(	heta) = - frac{1}{m} left[ sum_{i=1}^{m} sum_{j=1}^{k}  1left{y^{(i)} = j
ight} log frac{e^{	heta_j^T x^{(i)}}}{sum_{l=1}^k e^{ 	heta_l^T x^{(i)} }}
ight]
end{align}

    当k=2时,即有logistic的形式,下边是推倒:

    另上式中的便得到了logistic回归的损失函数。

    可以看到,softmax与logistic的损失函数只是k的取值不同而已,且在softmax中将类别x归为类别j的概率为:

    
p(y^{(i)} = j | x^{(i)} ; 	heta) = frac{e^{	heta_j^T x^{(i)}}}{sum_{l=1}^k e^{ 	heta_l^T x^{(i)}} }
.

    需要注意的一个问题是softmax回归中的模型参数化问题,即softmax的参数集是“冗余的”。

    假设从参数向量 	extstyle 	heta_j 中减去了向量 	extstyle psi,这时,每一个 	extstyle 	heta_j都变成了 	extstyle 	heta_j - psi(	extstyle j=1, ldots, k)。此时假设函数变成了以下的式子:

    
egin{align}
p(y^{(i)} = j | x^{(i)} ; 	heta)
&= frac{e^{(	heta_j-psi)^T x^{(i)}}}{sum_{l=1}^k e^{ (	heta_l-psi)^T x^{(i)}}}  \
&= frac{e^{	heta_j^T x^{(i)}} e^{-psi^Tx^{(i)}}}{sum_{l=1}^k e^{	heta_l^T x^{(i)}} e^{-psi^Tx^{(i)}}} \
&= frac{e^{	heta_j^T x^{(i)}}}{sum_{l=1}^k e^{ 	heta_l^T x^{(i)}}}.
end{align}

    也就是说,从 	extstyle 	heta_j 中减去 	extstyle psi 完全不影响假设函数的预测结果,这就说明 Softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数 	extstyle h_	heta,也就是说如果参数集合 	extstyle (	heta_1, 	heta_2,ldots, 	heta_k) 是代价函数 	extstyle J(	heta) 的极小值点,那么	extstyle (	heta_1 - psi, 	heta_2 - psi,ldots,
	heta_k - psi) 同样也是它的极小值点,其中 	extstyle psi 可以是任意向量,到底是什么造成的呢?从宏观上可以这么理解,因为此时的损失函数不是严格非凸的,也就是说在局部最小值点附近是一个”平坦”的,所以在这个参数附近的值都是一样的了。平坦假设函数空间的Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题。因此使 	extstyle J(	heta) 最小化的解不是唯一的。但此时 	extstyle J(	heta) 仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。

    还有一个值得注意的地方是:当 	extstyle psi = 	heta_1 时,我们总是可以将 	extstyle 	heta_1替换为	extstyle 	heta_1 - psi = vec{0}(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量 	extstyle 	heta_1(或者其他 	extstyle 	heta_j 中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的 	extstyle k	imes(n+1) 个参数 	extstyle (	heta_1, 	heta_2,ldots, 	heta_k) (其中 	extstyle 	heta_j in Re^{n+1}),我们可以令 	extstyle 	heta_1 =
vec{0},只优化剩余的 	extstyle (k-1)	imes(n+1) 个参数,这样算法依然能够正常工作。比如logistic就是这样的。

    在实际应用中,为了使算法看起来更直观更清楚,往往保留所有参数 	extstyle (	heta_1, 	heta_2,ldots, 	heta_n) ,而不任意地将某一参数设置为 0。但此时需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。

    目前对损失函数 	extstyle J(	heta) 的最小化还没有封闭解(closed-form),因此使用迭代的方法求解,如(Gradient Descent或者L-BFGS),经过求导,得到的梯度公式:

    
egin{align}

abla_{	heta_j} J(	heta) = - frac{1}{m} sum_{i=1}^{m}{ left[ x^{(i)} left( 1{ y^{(i)} = j}  - p(y^{(i)} = j | x^{(i)}; 	heta) 
ight) 
ight]  }
end{align}

    	extstyle 
abla_{	heta_j} J(	heta) 本身是一个向量,它的第 	extstyle l 个元素 	extstyle frac{partial J(	heta)}{partial 	heta_{jl}} 是 	extstyle J(	heta)	extstyle 	heta_j 的第 	extstyle l 个分量的偏导数。在梯度下降法的标准实现中,每一次迭代需要进行如下更新: 	extstyle 	heta_j := 	heta_j - alpha 
abla_{	heta_j} J(	heta)(	extstyle j=1,ldots,k)。(	extstyle 
abla_{	heta_j} J(	heta) 为方向,a代表在这个方向的步长)

    由于参数数量的庞大,所以可能需要权重衰减项来防止过拟合,一般的算法中都会有该项。添加一个权重衰减项 	extstyle frac{lambda}{2} sum_{i=1}^k sum_{j=0}^{n} 	heta_{ij}^2 来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:

    
egin{align}
J(	heta) = - frac{1}{m} left[ sum_{i=1}^{m} sum_{j=1}^{k} 1left{y^{(i)} = j
ight} log frac{e^{	heta_j^T x^{(i)}}}{sum_{l=1}^k e^{ 	heta_l^T x^{(i)} }}  
ight]
              + frac{lambda}{2} sum_{i=1}^k sum_{j=0}^n 	heta_{ij}^2
end{align}


    有了这个权重衰减项以后 (	extstyle lambda > 0),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为	extstyle J(	heta)是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。

    为了使用优化算法,我们需要求得这个新函数 	extstyle J(	heta) 的导数,如下:

    
egin{align}

abla_{	heta_j} J(	heta) = - frac{1}{m} sum_{i=1}^{m}{ left[ x^{(i)} ( 1{ y^{(i)} = j}  - p(y^{(i)} = j | x^{(i)}; 	heta) ) 
ight]  } + lambda 	heta_j
end{align}

    通过最小化 	extstyle J(	heta),我们就能实现一个可用的 softmax 回归模型。

    最后一个问题在logistic的文章里提到过,关于分类器选择的问题,是使用logistic建立k个分类器呢,还是直接使用softmax回归,这取决于数据之间是否是互斥的,k-logistic算法可以解决互斥问题,而softmax不可以解决,比如将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。 (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片

    考虑到处理的问题的不同,在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。最后补一张k-logistic的图片:

  • 相关阅读:
    Mac 终端命令使用自动补全时忽略大小写设置
    Android App专项测试
    评估产品机会
    如何快速获取ListView的打气筒对象
    js处理日期格式yyyy-MM-dd hh:mm:ss
    websocket聊天时,图片压缩处理(url或者input-file)
    canvas图片压缩,局部放大,像素处理
    vscode 右键文件或者文件夹显示菜单
    HTML5-SQLLite连接
    ie下div模拟的表格,表头表体无法对齐
  • 原文地址:https://www.cnblogs.com/ooon/p/5340071.html
Copyright © 2011-2022 走看看