zoukankan      html  css  js  c++  java
  • 中国剩余定理(学习笔记)

    定义:若m(_1),m(_2) (cdots)m(_n)是两两互质的正整数,M= (prod_{i=1}^n{m_i}),M(_i)=M/m(_i),t(_i)是线性同余方程M(_i)t(_i)≡1(mod m(_i))的一个解.对于任意的n个整数a(_1),a(_2) (cdots) a(_n),则同余方程组:

    [egin{cases}x≡a_1(mod)m_1\x≡a_2(mod)m_2\ cdots cdots\x≡a_n(mod)m_n\end{cases} ]

    有整数解,方程组的解为x=a(_1)M(_1)t(_1)+a(_2)M(_2)t(_2)+ (cdots) +a(_n)M(_n)t(_n).并且在(mod M)意义下有唯一解.

    证明:因为M(_i)=M/m(_i)是除m(_i)之外所有模数的倍数,所以(forall)k( ot=)i,a(_i)M(_i)t(_i)≡0(mod m(_k)).又因为a(_i)M(_i)t(_i)≡a(_i)(mod m(_i)),所以代入(x=sum_{i=1}^{n}{a_iM_it_i}),成立.

    结论:中国剩余定理给出了模数两两互质的线性同余方程组的一个特殊解.方程组的通解可以表示为x+kM(k∈Z).有些题目要求我们求出最小的非负整数解,只需把x对M取模,并让x落在0~M-1的范围内即可.

    因为条件中有t(_i)是线性同余方程M(_i)t(_i)≡1(mod m(_i))的一个解,所以学习中国剩余定理之前需要学习如何求解线性同余方程,不得不要的广告.

    直接来一道模板题,曹冲养猪

    #include<bits/stdc++.h>
    #define LL long long
    using namespace std;
    LL n,M=1;
    LL a[15],b[15];
    LL exgcd(LL a,LL b,LL &x,LL &y){
        if(b==0){x=1;y=0;return a;}
        LL d=exgcd(b,a%b,y,x);
        y-=x*(a/b);
        return d;
    }
    void Intchina(){
        LL x,y,ans=0;
        for(LL i=1;i<=n;i++){
    		LL Mi=M/a[i];
    		exgcd(Mi,a[i],x,y);
    		ans=((ans+Mi*x*b[i])%M+M)%M;
        }
        printf("%lld
    ",ans);
    }
    int main(){
        scanf("%lld",&n);
        for(int i=1;i<=n;i++){
    		scanf("%lld%lld",&a[i],&b[i]);
    		M*=a[i];
        }
        Intchina();
        return 0;
    }
    
    
  • 相关阅读:
    Java从入门到实战之(22)数组之练习
    LeetCode343. 整数拆分
    LeetCode64. 最小路径和
    LeetCode120. 三角形最小路径和
    LeetCode37. 解数独
    实验:通过Telnet访问路由器
    telnet 命令使用方法详解,telnet命令怎么用?
    COBIT、ITIL
    500 internal privoxy error错误怎么解决?
    iPhone12有充电器和耳机吗
  • 原文地址:https://www.cnblogs.com/PPXppx/p/10501600.html
Copyright © 2011-2022 走看看