zoukankan      html  css  js  c++  java
  • HDU 1007 Quoit Design

    传送门

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)


    Problem Description
    Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
    In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

    Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
     
    Input
    The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
     
    Output
    For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.
     
    Sample Input
    2 0 0 1 1 2 1 1 1 1 3 -1.5 0 0 0 0 1.5 0
     
    Sample Output
    0.71 0.00 0.75
     
    Author
    CHEN, Yue
     
    Source

    Solution

    裸的平面最近点对,但要注意题目要求的是最大套圈的半径(radius),而所求出的最近点对间的距离相当于最大套圈的直径(diameter)。

    Implementation

    #include <bits/stdc++.h>
    #define X first
    #define Y second
    #define INF 1e9
    #define N 1<<17
    using namespace std;
    
    typedef pair<double, double> P;
    
    P a[N];
    
    bool compare_y(const P &a, const P &b){
        return a.Y<b.Y;
    }
    //radius & diameter
    double closest_pair(P *a, int n){
        if(n<2) return INF;
        int m=n>>1;
        double x=a[m].X, d=min(closest_pair(a, m), closest_pair(a+m, n-m));
        inplace_merge(a, a+m, a+n, compare_y);
    
        vector<P> b;
        for(int i=0; i<n; i++){
            if(fabs(a[i].X-x)>=d) continue;
            for(auto p=b.rbegin(); p!=b.rend(); p++){
                double dx=a[i].X-p->X, dy=a[i].Y-p->Y;
                if(dy>=d) break;
                d=min(d, sqrt(dx*dx+dy*dy));
            }
            b.push_back(a[i]);
        }
        return d;
    }
    
    int main(){
        for(int n; cin>>n, n; ){
            for(int i=0; i<n; i++)
                scanf("%lf%lf", &a[i].X, &a[i].Y);
            sort(a, a+n);
            printf("%.2f
    ", closest_pair(a, n)/2);
        }
    }
  • 相关阅读:
    __attribute__ 总结
    linux文件夹打包命令
    学习ARM的一些基本知识,个人整理
    备忘录之 —— .bashrc(IC工具篇)
    GitHub的基本使用
    02: SocketServer服务
    01: socket模块
    08: python基础练习题
    07: 高阶函数&异常处理
    06: 面向对象
  • 原文地址:https://www.cnblogs.com/Patt/p/5710478.html
Copyright © 2011-2022 走看看