zoukankan      html  css  js  c++  java
  • UVA140 ——bandwidth(搜索)

    Given a graph (V,E) where V is a set of nodes and E is a set of arcs in VxV, and an ordering on the elements in V, then the bandwidth of a node v is defined as the maximum distance in the ordering between v and any node to which it is connected in the graph. The bandwidth of the ordering is then defined as the maximum of the individual bandwidths. For example, consider the following graph:

     

    picture25

     

    This can be ordered in many ways, two of which are illustrated below:

     

    picture47

     

    For these orderings, the bandwidths of the nodes (in order) are 6, 6, 1, 4, 1, 1, 6, 6 giving an ordering bandwidth of 6, and 5, 3, 1, 4, 3, 5, 1, 4 giving an ordering bandwidth of 5.

     

    Write a program that will find the ordering of a graph that minimises the bandwidth.

     

    Input

    Input will consist of a series of graphs. Each graph will appear on a line by itself. The entire file will be terminated by a line consisting of a single #. For each graph, the input will consist of a series of records separated by `;'. Each record will consist of a node name (a single upper case character in the the range `A' to `Z'), followed by a `:' and at least one of its neighbours. The graph will contain no more than 8 nodes.

     

    Output

    Output will consist of one line for each graph, listing the ordering of the nodes followed by an arrow (->) and the bandwidth for that ordering. All items must be separated from their neighbours by exactly one space. If more than one ordering produces the same bandwidth, then choose the smallest in lexicographic ordering, that is the one that would appear first in an alphabetic listing.

     

    Sample input

     

    A:FB;B:GC;D:GC;F:AGH;E:HD
    #

     

    Sample output

     

    A B C F G D H E -> 3

    求出排列好后,相连的两个值之间存在的最大值,然后找出最大值最小的那一组


    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    int maps[30][30];
    int hav[30];
    int p[10],a[10];
    int ans[10],n,pmax,sum;
    int work()        //如果相连,求它们之间距离的最大值
    {
        int tmax = 0;
        for(int i=1; i<n; i++)
        {
            for(int j=i+1; j<n; j++)
            {
                if(maps[a[i]][a[j]])
                {
                    if(j - i>tmax)
                        tmax=j-i;
                }
            }
        }
        return tmax;
    }
    void dfs(int cur)
    {
        int flag;
        if(cur==n)
        {
            sum=work();
            if(pmax>sum)      //找出最大距离最小的那一组
            {
                pmax=sum;
                memcpy(ans,a,sizeof(a));
            }
            return ;
        }
        else
        {
            for(int i=1; i<n; i++)
            {
                flag=1;
                a[cur]=p[i];
                for(int j=1; j<cur; j++)
                {
                    if(a[j]==a[cur])
                    {
                        flag=0;
                        break;
                    }
                }
                if(flag)
                    dfs(cur+1);
            }
        }
    }
    int main()
    {
        char str[100];
        char c;
        int len,i,pre,now;
        while(gets(str)&&strcmp(str,"#"))
        {
            n=1,pmax = 0x3f3f3f3f;
            len=strlen(str);
            memset(maps,0,sizeof(maps));
            memset(hav,0,sizeof(hav));
            memset(p,0,sizeof(p));
            for(i=0; i<len; i++)
            {
                c=str[i];
                if(str[i+1]==':')
                {
                    pre=c-'A'+1;
                    hav[pre]++;
                }
                else if(c>='A'&&c<='Z')
                {
                    now=c-'A'+1;
                    hav[now]++;
                    maps[now][pre]=maps[pre][now]=1;
                }
            }
            for(i=0; i<27; i++)
            {
                if(hav[i])
                    p[n++]=i;
            }
            dfs(1);
            for(i=1; i<n; i++)
                printf("%c ",ans[i]+'A'-1);
            printf("-> %d",pmax);
            printf("
    ");
        }
        return 0;
    }
    

      

  • 相关阅读:
    SpringBoot 之基础学习篇.
    Java 反射机制
    第二十二节,TensorFlow中的图片分类模型库slim的使用、数据集处理
    第二十一节,条件变分自编码
    第二十节,变分自编码
    第十九节,去噪自编码和栈式自编码
    使用webdriver+urllib爬取网页数据(模拟登陆,过验证码)
    第十八节,自编码网络介绍及代码实现
    第十七节,受限玻尔兹曼机网络及代码实现
    第二十二节,TensorFlow中RNN实现一些其它知识补充
  • 原文地址:https://www.cnblogs.com/Przz/p/5409805.html
Copyright © 2011-2022 走看看