zoukankan      html  css  js  c++  java
  • [poj2155]Matrix(二维树状数组)

    Matrix

    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 25004   Accepted: 9261

    Description

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). 

    We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 

    1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
    2. Q x y (1 <= x, y <= n) querys A[x, y]. 

    Input

    The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case. 

    The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above. 

    Output

    For each querying output one line, which has an integer representing A[x, y]. 

    There is a blank line between every two continuous test cases. 

    Sample Input

    1
    2 10
    C 2 1 2 2
    Q 2 2
    C 2 1 2 1
    Q 1 1
    C 1 1 2 1
    C 1 2 1 2
    C 1 1 2 2
    Q 1 1
    C 1 1 2 1
    Q 2 1
    

    Sample Output

    1
    0
    0
    1
    

    Source

    POJ Monthly,Lou Tiancheng
     
    继续继续
     
    二维树状数组果然比二维线段树简单多了
    讲一下二维树状数组
    其实我也不清楚多出来的一维怎么做
    但既然多套了一重循环就算作是二维了
    文字说不清,自己仿照一维画一个图就明白了
    再说这道题
    假设只有一维,我们可以用树状数组维护一个差分数组,区间首尾打标记+1,求和即可
    那么推广到二维,把维护差分数组的方式看成打一个标记
    四个点+1,对询问求一遍和模2
    尹神的办法zrl说可以推广,而这种办法只对01有效
    就是说对于正常的差分数组,区间修改应该是首加尾减
    到了二维应该这样维护
    -1 +1
    +1 -1
    就这样吧
     1 #include<stdio.h>
     2 #include<stdlib.h>
     3 #include<string.h>
     4 int bit[1010][1010];
     5 int n;
     6 int lb(int x){
     7     return x&(-x);
     8 }
     9 int q(int x,int y){
    10     int ans=0;
    11     while(x){
    12         int i=y;
    13         while(i){
    14             ans+=bit[x][i];
    15             i-=lb(i);
    16         }
    17         x-=lb(x);
    18     }
    19     return ans%2;
    20 }
    21 int c(int x,int y){
    22     while(x<=n+5){
    23         int i=y;
    24         while(i<=n+5){
    25             bit[x][i]++;
    26             i+=lb(i);
    27         }
    28         x+=lb(x);
    29     }
    30     return 0;
    31 }
    32 int main(){
    33     int T;
    34     scanf("%d",&T);
    35     while(T--){
    36         int t;
    37         scanf("%d %d",&n,&t);
    38         memset(bit,0,sizeof(bit));
    39         for(int i=1;i<=t;i++){
    40             char op=getchar();
    41             while(op!='C'&&op!='Q')op=getchar();
    42             switch(op){
    43                 case 'C':
    44                     int x1,y1,x2,y2;
    45                     scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
    46                     c(x1,y1);
    47                     c(x2+1,y1);
    48                     c(x1,y2+1);
    49                     c(x2+1,y2+1);
    50                     break;
    51                 case 'Q':
    52                     int x,y;
    53                     scanf("%d %d",&x,&y);
    54                     printf("%d
    ",q(x,y));
    55                     break;
    56                 default:
    57                     break;
    58             }
    59         }
    60         puts("");
    61     }
    62     return 0;
    63 }
    View Code
     
     
     
     
     
     
     
     
     
     
     
  • 相关阅读:
    django页面分类和继承
    django前端从数据库获取请求参数
    pycharm配置django工程
    django 应用各个py文件代码
    CF. 1428G2. Lucky Numbers(背包DP 二进制优化 贪心)
    HDU. 6566. The Hanged Man(树形背包DP DFS序 重链剖分)
    小米邀请赛 决赛. B. Rikka with Maximum Segment Sum(分治 决策单调性)
    区间树 学习笔记
    CF GYM. 102861M. Machine Gun(主席树)
    2016-2017 ACM-ICPC East Central North America Regional Contest (ECNA 2016) (B, D, G, H)
  • 原文地址:https://www.cnblogs.com/Pumbit-Legion/p/5824113.html
Copyright © 2011-2022 走看看