面试中最常见的问题之一。。。在N个数中间寻找前K大个元素
最常见的解法就是最大堆 时间复杂度O(N*log(K)) 空间复杂度O(k)
实现了一个最简单的最大堆,每次有元素进来都和堆顶元素比较一下,如果新元素比较大就替换,然后就逐级更新到堆底
namespace Clover.Algoritms.DataStructure { using System; using System.ComponentModel; using System.Linq.Expressions; using System.Reflection; using System.Runtime.CompilerServices; using System.Threading; using Clover.Algoritms.Common; public class MaxHeap { public double[] items; public int count = 0; public MaxHeap(int capacity) { if (capacity <= 0) { throw new ArgumentOutOfRangeException("capacity"); } this.items = new double[capacity]; for (int i = 0; i < this.items.Length; i++) { this.items[i] = double.MinValue; } } public bool Validate() { for (int i = 0; i < this.items.Length; i++) { int left = 2 * i + 1; int right = 2 * i + 2; if (left < this.items.Length) { if (this.items[left] > this.items[i]) { return false; } } if (right < this.items.Length) { if (this.items[right] > this.items[i]) { return false; } } } return true; } public void MaxHeapify(int i, int size = -1) { var s = size > 0 ? size : items.Length; if (i >= s) { return; } var l = this.left(i); var r = this.right(i); var largest = i; if (l < s && items[l] > items[i]) { largest = l; } if (r < s && items[r] > items[largest]) { largest = r; } if (largest != i) { var temp = items[i]; items[i] = items[largest]; items[largest] = temp; MaxHeapify(largest); } } public void BuildMaxHeap() { for (int i = items.Length / 2; i >= 0; i--) { this.MaxHeapify(i); } } public int left(int i) { return i * 2 + 1; } public int right(int i) { return i * 2 + 2; } public int parent(int i) { return i / 2 - 1; } public void HeapSort() { this.BuildMaxHeap(); for (int i = items.Length / 2; i >= 1; i--) { var temp = items[0]; items[0] = items[i]; items[i] = temp; var size = items.Length - 1 - items.Length / 2 + i; this.MaxHeapify(i, size); } } //max heap is used to find top k smallest items. public void PickTopN(double d) { if (count < items.Length) { items[count] = d; count++; if (count >= items.Length) { this.BuildMaxHeap(); } } else if (d < items[0]) { items[0] = d; this.MaxHeapify(0); } } public double Maximun() { if (count == 0) { throw new Exception("there is no any element in heap"); } return items[0]; } public double HeapExtractMax() { if (count == 0) { throw new Exception("there is no any element in heap"); } var max = items[0]; items[0] = items[count]; count--; this.MaxHeapify(0); return max; } public void MaxHeapInsnsert(double d) { count++; double[] newItems = new double[count]; for (int i = 0; i < count - 1; i++) { newItems[i] = items[i]; } newItems[count - 1] = double.MinValue; items = newItems; MaxHeapIncreaseKey(count - 1, d); } private void MaxHeapIncreaseKey(int ind, double d) { var i = ind; if (d < items[i]) { throw new Exception("new key is smaller than than current key"); } items[i] = d; while (i > 0 && items[this.parent(i)] < items[i]) { ObjectExtension.Exhange(ref items[i], ref items[this.parent(i)]); i = this.parent(i); } } } }