Add Digits
Total Accepted: 49702 Total Submissions: 104483 Difficulty: Easy
Given a non-negative integer num
, repeatedly add all its digits until the result has only one digit.
For example:
Given num = 38
, the process is like: 3 + 8 = 11
, 1 + 1 = 2
. Since 2
has only one digit, return it.
Follow up:
Could you do it without any loop/recursion in O(1) runtime?
Hint:
- A naive implementation of the above process is trivial. Could you come up with other methods?
- What are all the possible results?
- How do they occur, periodically or randomly?
- You may find this Wikipedia article useful.
这道题自己一开始想到模拟法,但是看到O(1)后开始思考,在找规律时分类太细了,所以最终没找到规律。
看题解的时候有两种找规律方法。
- 第一种:(转自http://bookshadow.com/weblog/2015/08/16/leetcode-add-digits/?utm_source=tuicool)
方法II:观察法 根据提示,由于结果只有一位数,因此其可能的数字为0 - 9 使用方法I的代码循环输出0 - 19的运行结果: in out in out 0 0 10 1 1 1 11 2 2 2 12 3 3 3 13 4 4 4 14 5 5 5 15 6 6 6 16 7 7 7 17 8 8 8 18 9 9 9 19 1 可以发现输出与输入的关系为: out = (in - 1) % 9 + 1
这种方法属于小学奥赛思维,直接观察,无法有很好的逻辑,不过的确写出来了。
- 第二种:(转自:http://www.cnblogs.com/wrj2014/p/4981350.html)
假设原来的数字为X,X可以表示为:
1
|
X=fn*Xn+fn-1*Xn-1+...+f1*x1 , Xn= pow (10,n-1); |
对X进行一次操作后得到X‘:
1
|
X’=fn+fn-1+...f1 |
X-X':
X-X' = fn*(Xn - 1) + fn-1*(Xn-1 - 1) + ... f1*(X1 - 1) = fn*9···99 + fn-1*9···9 + ... f1*0 = 9*( fn*1···11 + fn-1*1···1 + ... f2*1 + f1*0 ) = 9*S (S is a non-negative integer)
每一次都比原来的数少了个9的倍数!
还要考虑一些特殊情况,最终程序:
1 class Solution { 2 public: 3 int addDigits(int num) { 4 /* 5 X=fn*Xn+fn-1*Xn-1+...+f1*x1 , Xn=pow(10,n-1); 6 Every operator make X=> X'=fn+fn-1+...f1 7 X-X' =fn*(Xn - 1)+fn-1*(Xn-1 - 1)+...f1*(X1 - 1) 8 =fn*9···99+fn-1*9···9+..f1*0 9 =9*(fn*1···11+fn-1*1···1+...f2*1+f1*0) 10 =9*S (S is a non-negative integer) 11 => Everytime reduce a number of multiple 9 12 */ 13 if(num==0) return 0; 14 int t=num%9; 15 return (t!=0)?t:9; 16 } 17 };
最后是自己交上去的代码:
1 class Solution { 2 public: 3 int addDigits(int num) { 4 if (num < 10) 5 return num; 6 else { 7 int i = num % 9; 8 if (i == 0) 9 return 9; 10 else 11 return i; 12 } 13 } 14 };