zoukankan      html  css  js  c++  java
  • 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了……看来“学”完新东西不经常做题不写博客,就白学了 = =

    我没啥智商 ,网上的FWT博客我大多看不懂,下面这篇博客是留给我我再次忘记FWT时看的,所以像我一样的没智商选手应该也能看懂!有智商选手更能看懂咯!

    (写得非常匆忙,如有任何错误请在评论区指正!TAT)

    什么是FWT

    FWT是用来快速做位运算卷积的。位运算卷积是什么?给出两个数组(A)(B)(长度相等且是2的整数次幂),求一个数组(C),满足(A * B = C),这个“(*)”的定义如下:$$A * B = C Leftrightarrow C_k = sum_{ioplus j = k}A_i cdot B_j$$ 其中“(oplus)”是一种位运算,可以是与(&)、或(|)、异或(^)。

    为什么要有一个变换呢?回想一下FFT,FFT求(A*B)时(这个“(*)”是多项式乘法那个卷积),是把(A)(B)各自“变换”了一下,然后把变换后的数组按位相乘,得到“变换后的(C)”——(tf(C)),然后把(tf(C))逆变换回去,得到(C)数组。

    FWT做位运算卷积的原理也类似,想要实现快速位运算卷积,就要找到一种变换(tf)满足(tf(A*B) = tf(A) imes tf(B)),这里的“( imes)”表示两个数组按位相乘(和那个表示卷积的“(*)”不是一个符号)。

    再强调一下本文中符号的定义,在下文中:

    [A * B = C Leftrightarrow C_k = sum_{ioplus j = k}A_i cdot B_j ]

    [A imes B = C Leftrightarrow C_i = A_i cdot B_i ]

    用FWT解决或卷积

    或卷积,就是把(A * B = C Leftrightarrow C_k = sum_{ioplus j = k}A_i cdot B_j)中的“(oplus)”定义为按位或运算(|)。我们的目标是找到一种变换(tf)满足(tf(A*B) = tf(A) imes tf(B)),还要找到一种逆变换(utf),能把(tf(C))变回(C)

    目标

    • 找到(tf)
    • 找到(utf)

    找到(tf)

    这是位运算,所以应该按位分治。

    根据下标在最高位是0还是1,把(A)数组拆成两个数组(A_0)(A_1)(A_0)(A)中下标最高位是0的元素组成的数组,(A_1)(A)中下标最高位是1的元素组成的数组——实际上,(A_0)就是(A)的前一半,(A_1)(A)的后一半。用(A = (A_0, A_1))表示这种“等式右边两个数组首尾相接就能得到等式左边的数组”的关系。

    定义$$tf(A) = (tf(A_0), tf(A_1) + tf(A_0))$$

    (A)长度为1,无法再划分时,(tf(A) = A)

    对了,显然(tf(X + Y) = tf(X) + tf(Y)),这里“(+)”就是按位相加。

    (这个(tf)是怎么找到的?这篇博客讲了讲……但是即使我知道了如何找到或卷积的(tf),异或卷积的我还是找不出来……还是甩出这个式子然后证明它吧。)

    来证明一下(tf(C = A * B) = tf(A) imes tf(B))

    (A, B)长度均为1时显然。

    (A, B)长度大于1时 ,我们使用归纳法——可以假定“长度除以2(tf(C = A * B) = tf(A) imes tf(B))是成立的”,即$$tf(A_0*B_0) = tf(A_0) imes tf(B_0) f(A_1 * B_1) = tf(A_1) imes tf(B_1) f(A_0 * B_1) = tf(A_0) imes tf(B_1) f(A_1 * B_0) = tf(A_1) imes tf(B_0)$$如果我们在这四个条件的基础上能证明(tf(C = A * B) = tf(A) imes tf(B)),则这四个条件递归证明即可,递归到长度为1时,就直接证毕了。

    那么如何证明当前这一层(tf(C = A * B) = tf(A) imes tf(B))呢?

    首先,$$C=(A_0 * B_0, A_1 * B_0 + A_0 * B_1 + A_1 * B_1)$$。这是可以理解的:在(A)中最高位是0的一个下标,和在(B)中最高位是0的一个下标,或起来还是0,所以他俩卷积的结果应该放在(C_0)中,其余三项同理。

    然后从等式左边推一下,$$egin{align}tf(C) &= (tf(A_0 * B_0), tf(A_1 * B_0 + A_0 * B_1 + A_1 * B_1) + tf(A_0 * B_0))&=(tf(A_0B_0), tf(A_1B_0) + tf(A_0B_1) + tf(A_1 * B_1) + tf(A_0 * B_0)) &= (tf(A_0) imes tf(B_0), tf(A_1) imes tf(B_0) + tf(A_0) imes tf(B_1) + tf(A_1) imes tf(B_1) + tf(A_0) imes tf(B_0))end{align*}$$

    这一步是基于(tf)的定义以及上面的那四个条件的。

    然后从等式右边推一下,$$egin{align}tf(A) imes tf(B) &= (tf(A_0), tf(A_1) + tf(A_0)) imes (tf(B_0), tf(B_1) + tf(B_0)))&=(tf(A_0) imes tf(B_0), tf(A_0) imes tf(B_0) + tf(A_1) imes tf(B_0) + tf(A_0) imes tf(B_1) + tf(A_1) imes tf(B_1))end{align}$$

    这一步是基于“( imes)”符号的意义——按位相乘得出来的。

    这样一来,等式两边恰好相等诶!

    所以我们已经找到了或卷积的(tf):$$tf(A) = (tf(A_0), tf(A_1) + tf(A_0))$$

    找到(utf)

    目标:找到一个(utf)使得(utf(tf(A)) = A)

    这相当于把上面那个式子倒着推,怎么个倒推法呢?

    正着推是已知(A = (A_0, A_1)),求(tf(A) = (tf(A)_0, tf(A)_1))

    倒着推就是已知(tf(A) = (tf(A)_0, tf(A)_1)),求(utf(tf(A)) = A = (A_0, A_1) = (utf(tf(A_0)), utf(tf(A_1))))

    那么根据上面的(tf(A) = (tf(A_0), tf(A_1) + tf(A_0))),有(tf(A)_0 = tf(A_0), tf(A)_1 = tf(A_0) + tf(A_1))

    所以直接得到(tf(A_0) = tf(A)_0), 两式相减又得到(tf(A_1) = tf(A)_1 - tf(A)_0)

    所以(utf(tf(A)) = A = (A_0, A_1) = (utf(tf(A_0)), utf(tf(A_1)) = (utf(tf(A)_0), utf(tf(A)_1 - tf(A)_0)))

    (tf(A))替换成(A),得到(utf(A) = (utf(A), utf(A_1) - utf(A_0)))

    这就是逆变换(utf)了。

    总结

    或卷积的FWT:

    [tf(A) = (tf(A_0), tf(A_1) + tf(A_0)) ]

    [utf(A) = (utf(A), utf(A_1) - utf(A_0)) ]

    用FWT解决与卷积

    与卷积和或卷积非常类似。

    (C = (A_0*B_0 + A_0*B_1 + A_1 *B_0, A_1*B_1))

    定义$$tf(A) = (tf(A_0) + tf(A_1), tf(A_1))$$

    类似上面或卷积的证明过程可以证明它。

    类似地,$$utf(A) = (utf(A_0) - utf(A_1), utf(A_1))$$

    用FWT解决异或卷积

    和上面的也很类似,但是异或卷积的式子更复杂一丁点。它是:

    [tf(A) = (tf(A_0) + tf(A_1), tf(A_0) - tf(A_1)) ]

    [utf(A) = (frac{utf(A_0) + utf(A_1)}{2}, frac{utf(A_0) - utf(A_1)}{2}) ]

    证明嘛……和上面的或卷积证明也差不多!

    板子

    我的异或卷积板子:

    ll inc(ll x, ll y){return (x += y) >= P ? x - P : x;}
    ll dec(ll x, ll y){return (x -= y) < 0 ? x + P : x;}
    void transform(ll *a, int n, bool inv){
        for(int l = 2; l <= n; l <<= 1){
    	int m = l >> 1;
    	for(ll *p = a; p != a + n; p += l)
    	    for(int i = 0; i < m; i++){
    		ll t = p[i + m];
    		p[i + m] = dec(p[i], t);
    		p[i] = inc(p[i], t);
    	    }
    	if(inv)
    	    for(int i = 0; i < n; i++)
    		a[i] = a[i] * inv2 % P;
        }
    }
    

    异或已经是写起来最长的啦,其他两个都特别短~

  • 相关阅读:
    校内模拟赛吧 ———— 2019.10.30
    牛客CSP-S提高组赛前集训营1———2019.10.29 18:30 至 22:00
    关于gcd
    洛谷 P1156 垃圾陷阱 题解
    选球游戏 题解———2019.10.19
    小梵同学前进!
    小梵同学 GO!
    先天八卦向后天八卦演进逻辑猜想
    [delphi]在DLL中多线程同步Synchronize卡死问题
    GDI与GDI+性能比较
  • 原文地址:https://www.cnblogs.com/RabbitHu/p/9182047.html
Copyright © 2011-2022 走看看