Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
/** * Definition for an interval. * public class Interval { * int start; * int end; * Interval() { start = 0; end = 0; } * Interval(int s, int e) { start = s; end = e; } * } */ public class Solution { public ArrayList<Interval> insert(ArrayList<Interval> intervals, Interval newInterval) { ArrayList<Interval> result = new ArrayList<Interval>(); for(int i = 0; i < intervals.size(); i ++){ Interval temp = intervals.get(i); if(temp.start> newInterval.end){ result.add(newInterval); for(int j = i; j < intervals.size(); j++){ result.add(intervals.get(j)); } return result; } else if( newInterval.start > temp.end){ result.add(temp); continue; } else{ // Attention : method Math.min and Math.max newInterval.start = Math.min(newInterval.start, temp.start); newInterval.end = Math.max(newInterval.end, temp.end); } } /*easy to forget. The situation that newInterval.start is the biggest */ result.add(newInterval); return result; } }