需要充分利用题目性质的一道好题。
由于题目数据范围较小,同时情况复杂限制条件多,我们考虑使用网络流来描述这个问题。
显然,每天都会有 (a_i) 个研究生进入濒死状态,因此,我们可以采用提前计算的方法钦定每天都会有 (a_i) 个研究生进入救治。因此,我们为每天建立一个点,为每天单独建立一个点,从原点往这样一个点连接容量为当天新产生濒死研究生数量,同时从这点往之后的天数连边,表示有些研究生通过医院在那些天复活了,同时限定费用。
我们把每天往汇点连接需要研究生数量条边,我们要求每条边满流。
因此,我们从原点往第一天连边,由于只要买了一个研究生那他就永远属于你了,那不如在第一天就买好,同时从每一天往下一天连边。
正确性显然能保证。
代码如下:
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
template <typename T>
void read(T &x) {
T f=1;x=0;char s=getchar();
while(s<'0'||s>'9'){if(s=='-') f=-1;s=getchar();}
while(s>='0'&&s<='9') {x=(x<<3)+(x<<1)+(s^'0');s=getchar();}
x *= f;
}
const int MAXN = 1e6 + 5;
const int MAXM = 1e6 + 6;
const int inf = 1e15;
int head[MAXN] , to[MAXM << 1] , nxt[MAXM << 1] , edge[MAXM << 1] , val[MAXM << 1] , cnt = 1;
void add(int u , int v , int c , int w) {
nxt[++cnt] = head[u];head[u] = cnt;to[cnt] = v;edge[cnt] = c;val[cnt] = w;
nxt[++cnt] = head[v];head[v] = cnt;to[cnt] = u;edge[cnt] = 0;val[cnt] = -w;
}
int s , t , pre[MAXN] , las[MAXN] , dis[MAXN] , flow[MAXN] , vis[MAXN] , num;
struct MinCostMaxFlow {
int MaxFlow , MinCost;
bool bfs() {
queue <int> q;
q.push(s);
int flag = 0;
while(!q.empty()) {
int x = q.front();
q.pop();
vis[x] = 0;
for (int i = head[x]; i; i = nxt[i]) {
int v = to[i];
if(!edge[i]) continue;
if(dis[v] > dis[x] + val[i]) {
las[v] = i;
pre[v] = x;
dis[v] = dis[x] + val[i];
flow[v] = min(flow[x] , edge[i]);
if(v == t) {
flag = 1;
continue;
}
if(!vis[v]) q.push(v) , vis[v] = 1;
}
}
}
return flag;
}
void MVMC() {
MinCost = MaxFlow = 0;
for (int i = 1; i <= num; ++i) dis[i] = inf , vis[i] = 0 , flow[i] = 0;
flow[s] = inf;
dis[s] = 0;
while(bfs()) {
MinCost += flow[t] * dis[t];
MaxFlow += flow[t];
int now = t;
while(now != s) {
edge[las[now]] -= flow[t];
edge[las[now] ^ 1] += flow[t];
now = pre[now];
}
for (int i = 1; i <= num; ++i) dis[i] = inf , vis[i] = 0 , flow[i] = 0;
flow[s] = inf;
dis[s] = 0;
}
}
}MIN;
struct MaxCostMaxFlow {
int MaxFlow , MaxCost;
bool bfs() {
queue <int> q;
q.push(s);
int flag = 0;
while(!q.empty()) {
int x = q.front();
q.pop();
vis[x] = 0;
for (int i = head[x]; i; i = nxt[i]) {
int v = to[i];
if(!edge[i]) continue;
if(dis[v] < dis[x] + val[i]) {
las[v] = i;
pre[v] = x;
dis[v] = dis[x] + val[i];
flow[v] = min(flow[x] , edge[i]);
if(v == t) {
flag = 1;
continue;
}
if(!vis[v]) q.push(v) , vis[v] = 1;
}
}
}
return flag;
}
void MVMC() {
MaxCost = MaxFlow = 0;
for (int i = 1; i <= num; ++i) dis[i] = -inf , vis[i] = 0 , flow[i] = 0;
flow[s] = inf;
dis[s] = 0;
while(bfs()) {
MaxCost += flow[t] * dis[t];
MaxFlow += flow[t];
int now = t;
while(now != s) {
edge[las[now]] -= flow[t];
edge[las[now] ^ 1] += flow[t];
now = pre[now];
}
for (int i = 1; i <= num; ++i) dis[i] = -inf , vis[i] = 0 , flow[i] = 0;
flow[s] = inf;
dis[s] = 0;
}
}
}MAX;
int a[MAXN] , day[MAXN] , d[MAXN] , q[MAXN];
signed main() {
int T , P = 0;
read(T);
while(T -- > 0) {
int n , m , k;
read(n),read(m),read(k);
s = 1 , t = 2 , num = 2;
int tot = 0;
for (int i = 1; i <= n; ++i) {
read(a[i]);
day[i] = ++num;
add(day[i] , t , a[i] , 0);
tot += a[i];
}
for (int i = 2; i <= n; ++i) add(day[i - 1] , day[i] , inf , 0);
for (int i = 1; i <= m; ++i) {
int l , p;
read(l),read(p);
add(s , day[1] , l , p);
}
for (int i = 1; i <= k; ++i) read(d[i]),read(q[i]),d[i]++;
for (int i = 1; i <= n; ++i) {
++num;
add(s , num , a[i] , 0);
for (int j = 1; j <= k; ++j) {
if(i + d[j] <= n) add(num , day[i + d[j]] , inf , q[j]);
}
}
printf("Case %lld: " , ++P);
MIN.MVMC();
if(MIN.MaxFlow != tot) puts("impossible");
else printf("%lld
" , MIN.MinCost);
cnt = 1;
for (int i = 1; i <= num; ++i) head[i] = 0;
}
return 0;
}