zoukankan      html  css  js  c++  java
  • BZOJ 3280 小R的烦恼

    需要充分利用题目性质的一道好题。

    由于题目数据范围较小,同时情况复杂限制条件多,我们考虑使用网络流来描述这个问题。

    显然,每天都会有 (a_i) 个研究生进入濒死状态,因此,我们可以采用提前计算的方法钦定每天都会有 (a_i) 个研究生进入救治。因此,我们为每天建立一个点,为每天单独建立一个点,从原点往这样一个点连接容量为当天新产生濒死研究生数量,同时从这点往之后的天数连边,表示有些研究生通过医院在那些天复活了,同时限定费用。

    我们把每天往汇点连接需要研究生数量条边,我们要求每条边满流。

    因此,我们从原点往第一天连边,由于只要买了一个研究生那他就永远属于你了,那不如在第一天就买好,同时从每一天往下一天连边。

    正确性显然能保证。

    代码如下:

    #include <cmath>
    #include <queue>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #define int long long
    using namespace std;
    
    template <typename T>
    void read(T &x) {
    	T f=1;x=0;char s=getchar();
    	while(s<'0'||s>'9'){if(s=='-') f=-1;s=getchar();}
    	while(s>='0'&&s<='9') {x=(x<<3)+(x<<1)+(s^'0');s=getchar();}
    	x *= f;
    } 
    
    const int MAXN = 1e6 + 5;
    const int MAXM = 1e6 + 6;
    const int inf = 1e15;
    
    int head[MAXN] , to[MAXM << 1] , nxt[MAXM << 1] , edge[MAXM << 1] , val[MAXM << 1] , cnt = 1;
    void add(int u , int v , int c , int w) {
    	nxt[++cnt] = head[u];head[u] = cnt;to[cnt] = v;edge[cnt] = c;val[cnt] = w;
    	nxt[++cnt] = head[v];head[v] = cnt;to[cnt] = u;edge[cnt] = 0;val[cnt] = -w;
    } 
    
    int s , t , pre[MAXN] , las[MAXN] , dis[MAXN] , flow[MAXN] , vis[MAXN] , num;
    
    struct MinCostMaxFlow {
    	int MaxFlow , MinCost;
    	bool bfs() {
    		queue <int> q;
    		q.push(s);
    		int flag = 0;
    		while(!q.empty()) {
    			int x = q.front();
    			q.pop();
    			vis[x] = 0;
    			for (int i = head[x]; i; i = nxt[i]) {
    				int v = to[i];
    				if(!edge[i]) continue;
    				if(dis[v] > dis[x] + val[i]) {
    					las[v] = i;
    					pre[v] = x;
    					dis[v] = dis[x] + val[i];
    					flow[v] = min(flow[x] , edge[i]);
    					if(v == t) {
    						flag = 1;
    						continue;
    					}
    					if(!vis[v]) q.push(v) , vis[v] = 1;
    				}
    			}
    		}
    		return flag;
    	}
    	
    	void MVMC() {
    		MinCost = MaxFlow = 0;
    		for (int i = 1; i <= num; ++i) dis[i] = inf , vis[i] = 0 , flow[i] = 0;
    		flow[s] = inf;
    		dis[s] = 0;
    		while(bfs()) {
    			MinCost += flow[t] * dis[t];
    			MaxFlow += flow[t];
    			int now = t;
    			while(now != s) {
    				edge[las[now]] -= flow[t];
    				edge[las[now] ^ 1] += flow[t];
    				now = pre[now];
    			}
    			for (int i = 1; i <= num; ++i) dis[i] = inf , vis[i] = 0 , flow[i] = 0;
    			flow[s] = inf;
    			dis[s] = 0;
    		}
    	}
    }MIN;
    
    
    struct MaxCostMaxFlow {
    	int MaxFlow , MaxCost;
    	bool bfs() {
    		queue <int> q;
    		q.push(s);
    		int flag = 0;
    		while(!q.empty()) {
    			int x = q.front();
    			q.pop();
    			vis[x] = 0;
    			for (int i = head[x]; i; i = nxt[i]) {
    				int v = to[i];
    				if(!edge[i]) continue;
    				if(dis[v] < dis[x] + val[i]) {
    					las[v] = i;
    					pre[v] = x;
    					dis[v] = dis[x] + val[i];
    					flow[v] = min(flow[x] , edge[i]);
    					if(v == t) {
    						flag = 1;
    						continue;
    					}
    					if(!vis[v]) q.push(v) , vis[v] = 1;
    				}
    			}
    		}
    		return flag;
    	}
    	
    	void MVMC() {
    		MaxCost = MaxFlow = 0;
    		for (int i = 1; i <= num; ++i) dis[i] = -inf , vis[i] = 0 , flow[i] = 0;
    		flow[s] = inf;
    		dis[s] = 0;
    		while(bfs()) {
    			MaxCost += flow[t] * dis[t];
    			MaxFlow += flow[t];
    			int now = t;
    			while(now != s) {
    				edge[las[now]] -= flow[t];
    				edge[las[now] ^ 1] += flow[t];
    				now = pre[now];
    			}
    			for (int i = 1; i <= num; ++i) dis[i] = -inf , vis[i] = 0 , flow[i] = 0;
    			flow[s] = inf;
    			dis[s] = 0;
    		}
    	}
    }MAX;
    
    int a[MAXN] , day[MAXN] , d[MAXN] , q[MAXN];
    
    signed main() {
    	int T , P = 0;
    	read(T);
    	while(T -- > 0) {
    		int n , m , k;
    		read(n),read(m),read(k);
    		s = 1 , t = 2 , num = 2;
    		int tot = 0;
    		for (int i = 1; i <= n; ++i) {
    			read(a[i]);
    			day[i] = ++num;
    			add(day[i] , t , a[i] , 0);
    			tot += a[i];
    		}
    		for (int i = 2; i <= n; ++i) add(day[i - 1] , day[i] , inf , 0);
    		for (int i = 1; i <= m; ++i) {
    			int l , p;
    			read(l),read(p);
    			add(s , day[1] , l , p);
    		}
    		for (int i = 1; i <= k; ++i) read(d[i]),read(q[i]),d[i]++;
    		for (int i = 1; i <= n; ++i) {
    			++num;
    			add(s , num , a[i] , 0);
    			for (int j = 1; j <= k; ++j) {
    				if(i + d[j] <= n) add(num , day[i + d[j]] , inf , q[j]);
    			}
    		}
    		printf("Case %lld: " , ++P);
    		MIN.MVMC();
    		if(MIN.MaxFlow != tot) puts("impossible");
    		else printf("%lld
    " , MIN.MinCost);
    		cnt = 1;
    		for (int i = 1; i <= num; ++i) head[i] = 0;
    	}
    	
    	return 0;
    }
    
  • 相关阅读:
    Form 中调用指定请求并给定默认参数
    OAF 汇总行的做法
    EBS 开发常用SQL
    EBS 中常用的配置文件及说明
    OAF 常见概念介绍
    OAF 多语言的实现
    OAF 个性化基础
    OAF 开发前置配置
    条款20 STL函数对象
    条款19 command 模式与好莱坞法则
  • 原文地址:https://www.cnblogs.com/Reanap/p/14238368.html
Copyright © 2011-2022 走看看