题目链接:http://poj.org/problem?id=2763
n个节点的树上知道了每条边权,然后有两种操作:0操作是输出 当前节点到 x节点的最短距离,并移动到 x 节点位置;1操作是第i条边的边权变成x。
树链边权剖分的模版题,修改单边权和求和。
1 //#pragma comment(linker, "/STACK:102400000,102400000") 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 using namespace std; 6 const int MAXN = 1e5 + 5; 7 struct EDGE { 8 int next, to, cost; 9 }edge[MAXN << 2]; 10 int head[MAXN], tot; 11 int from[MAXN], to[MAXN], cost[MAXN]; 12 int par[MAXN], dep[MAXN], son[MAXN], size[MAXN]; 13 int top[MAXN], id[MAXN], cnt; 14 15 void init() { 16 cnt = tot = 0; 17 memset(head, -1, sizeof(head)); 18 } 19 20 inline void add(int u, int v, int cost) { 21 edge[tot].next = head[u]; 22 edge[tot].to = v; 23 head[u] = tot++; 24 } 25 26 void dfs1(int u, int p, int d) { 27 dep[u] = d, par[u] = p, size[u] = 1, son[u] = u; 28 for(int i = head[u]; ~i; i = edge[i].next) { 29 int v = edge[i].to; 30 if(v == p) 31 continue; 32 dfs1(v, u, d + 1); 33 if(size[v] >= size[son[u]]) 34 son[u] = v; 35 size[u] += size[v]; 36 } 37 } 38 39 void dfs2(int u, int p, int t) { 40 top[u] = t, id[u] = ++cnt; 41 if(son[u] != u) 42 dfs2(son[u], u, t); 43 for(int i = head[u]; ~i; i = edge[i].next) { 44 int v = edge[i].to; 45 if(v == son[u] || v == p) 46 continue; 47 dfs2(v, u, v); 48 } 49 } 50 51 struct segtree { 52 int l, r, val; 53 }T[MAXN << 2]; 54 55 void build(int p, int l, int r) { 56 int mid = (l + r) >> 1; 57 T[p].l = l , T[p].r = r; 58 if(l == r) { 59 return ; 60 } 61 build(p << 1, l, mid); 62 build((p << 1)|1, mid + 1, r); 63 } 64 65 void updata(int p, int pos, int num) { 66 int mid = (T[p].l + T[p].r) >> 1; 67 if(T[p].l == T[p].r && T[p].l == pos) { 68 T[p].val = num; 69 return ; 70 } 71 if(pos <= mid) { 72 updata(p << 1, pos, num); 73 } 74 else { 75 updata((p << 1)|1, pos, num); 76 } 77 T[p].val = T[p << 1].val + T[(p << 1)|1].val; 78 } 79 80 int query(int p, int l, int r) { 81 int mid = (T[p].l + T[p].r) >> 1; 82 if(l == T[p].l && T[p].r == r) { 83 return T[p].val; 84 } 85 if(r <= mid) { 86 return query(p << 1, l, r); 87 } 88 else if(l > mid) { 89 return query((p << 1)|1, l, r); 90 } 91 else { 92 return query(p << 1, l, mid) + query((p << 1)|1, mid + 1, r); 93 } 94 } 95 96 int find(int u, int v) { 97 int fu = top[u], fv = top[v], res = 0; 98 while(fv != fu) { 99 if(dep[fu] > dep[fv]) { 100 res += query(1, id[fu], id[u]); 101 u = par[fu]; 102 fu = top[u]; 103 } 104 else { 105 res += query(1, id[fv], id[v]); 106 v = par[fv]; 107 fv = top[v]; 108 } 109 } 110 if(v == u) 111 return res; 112 else if(dep[u] > dep[v]) 113 return res + query(1, id[son[v]], id[u]); 114 else 115 return res + query(1, id[son[u]], id[v]); 116 } 117 118 int main() 119 { 120 int n, m, root; 121 while(~scanf("%d %d %d", &n, &m, &root)) { 122 init(); 123 for(int i = 1; i < n; ++i) { 124 scanf("%d %d %d", from + i, to + i, cost + i); 125 add(from[i], to[i], cost[i]); 126 add(to[i], from[i], cost[i]); 127 } 128 dfs1(1, 1, 0); 129 dfs2(1, 1, 1); 130 build(1, 1, cnt); 131 for(int i = 1; i < n; ++i) { 132 if(dep[from[i]] < dep[to[i]]) 133 swap(from[i], to[i]); 134 updata(1, id[from[i]], cost[i]); 135 } 136 int op, pos, num; 137 while(m--) { 138 scanf("%d", &op); 139 if(op) { 140 scanf("%d %d", &pos, &num); 141 updata(1, id[from[pos]], num); 142 } 143 else { 144 scanf("%d", &pos); 145 printf("%d ", find(root, pos)); 146 root = pos; 147 } 148 } 149 } 150 }