zoukankan      html  css  js  c++  java
  • 一个含有Fibonacci Number的级数

    [Largedisplaystyle sum_{n=0}^infty frac{1}{F_{2n+1}+1}=frac{sqrt5}{2} ]


    (Largemathbf{Proof:})
    Let (phi=dfrac{1+sqrt{5}}{2}) denote the golden ratio. Then consider the partial sum,

    [egin{align*} sum_{n=0}^Nfrac{1}{1+F_{2n+1}}&= sum_{n=0}^Nfrac{1}{1+dfrac{phi^{2n+1}+phi^{-(2n+1)}}{sqrt{5}}} \ &= sqrt{5} sum_{n=0}^{N}frac{phi^{2n+1}}{phi^{2(2n+1)}+sqrt{5}phi^{2n+1}+1} \ &=sqrt{5} sum_{n=0}^{N}frac{phi^{2n+1}}{(phi^{2n+1}+phi)left( phi^{2n+1}+dfrac{1}{phi} ight)}\ &= sqrt{5} sum_{n=0}^{N}frac{phi^{2n+1}}{(phi^{2n}+1)left( phi^{2n+2}+1 ight)} \ &= frac{phisqrt{5}}{1-phi^2}sum_{n=0}^Nleft(frac{phi^{2n}}{1+phi^{2n}}-frac{phi^{2n+2}}{1+phi^{2n+2}} ight) \ &=sqrt{5}left(frac{phi^{2N+2}}{1+phi^{2N+2}} -frac{1}{2} ight) end{align*} ]

    Let (N oinfty) to get

    [Largeoxed{displaystyle sum_{n=0}^inftyfrac{1}{1+F_{2n+1}}=color{blue}{frac{sqrt{5}}{2}}} ]

  • 相关阅读:
    POJ 1680 Fork() Makes Trouble
    课堂改进意见
    梦断代码 读后感3
    梦断代码 读后感2
    找一问题
    软件评价——搜狗输入法
    《梦断代码》读后感1
    站立会议第十天
    站立会议第九天
    站立会议第八天
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5458328.html
Copyright © 2011-2022 走看看