zoukankan      html  css  js  c++  java
  • P1220 关路灯

    【P1220】关路灯 - 洛谷

    https://www.luogu.org/problem/show?pid=1220

    P1220 关路灯

    题目描述

    某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

    为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

    现在已知老张走的速度为1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。

    请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

    输入输出格式

    输入格式:

    文件第一行是两个数字n(0<n<50,表示路灯的总数)和c(1<=c<=n老张所处位置的路灯号);

    接下来n行,每行两个数据,表示第1盏到第n盏路灯的位置和功率。

    输出格式:

    一个数据,即最少的功耗(单位:J,1J=1W·s)。

    输入输出样例

    输入样例#1:
    5 3
    2 10
    3 20
    5 20
    6 30
    8 10
    输出样例#1:
    270  

    说明

    输出解释:

    {此时关灯顺序为3 4 2 1 5,不必输出这个关灯顺序}

    分析:

    dp:

    ⑴每个路灯的花费为 ci*ti ,即功率乘以关闭的时间。

    ⑵所关掉的路灯是一个连续的区间,越过一个亮着的路灯而去关其他路灯显然不是最优的。因为了连续区域可以用前缀和预处理。

    F[i][j][0]表示区间i到j最后一个关的是第i盏灯所需最小电。F[i][j][1]表示区间i到j最后一个关的是第j盏灯所需的最小电。

    状态转移:

    F[i][j][0]=min((a[i+1]-a[i])*(sum[n]-sum[j]+sum[i])+F[i+1][j][0],(a[j]-a[i])*(sum[n]-sum[j]+sum[i])+F[i+1][j][1]);

    F[i][j][1]=min((a[j]-a[j-1])*(sum[n]-sum[j-1]+sum[i-1])+F[i][j-1][1],(a[j]-a[i])*(sum[n]-sum[j-1]+sum[i-1])+F[i][j-1][0]);

     

     1 #include<cstdio>  
     2 #include<cstring>  
     3 #define min(u,v) u<v ? u:v  
     4   
     5 int n,m,a[1005],c[1005],f[1005][1005][2];  
     6   
     7 int main()  
     8 {  
     9     scanf("%d%d",&n,&m);  
    10     for(int i=1;i<=n;i++)  
    11     {  
    12         scanf("%d%d",&c[i],&a[i]);  
    13         a[i]+=a[i-1];  
    14     }  
    15     memset(f,127,sizeof(f));  
    16     f[m][m][0]=f[m][m][1]=0;  
    17     for(int j=m;j<=n;j++)  
    18       for(int i=j-1;i;i--)  
    19       {  
    20           //i,j区间外的灯在发光
    21         //c[i+1]-c[i]表示时间 
    22         f[i][j][0]=min(f[i+1][j][0]+(a[n]-(a[j]-a[i]))*(c[i+1]-c[i]),  
    23                        f[i+1][j][1]+(a[n]-(a[j]-a[i]))*(c[j]-c[i]));  
    24         f[i][j][1]=min(f[i][j-1][1]+(a[n]-(a[j-1]-a[i-1]))*(c[j]-c[j-1]),  
    25                        f[i][j-1][0]+(a[n]-(a[j-1]-a[i-1]))*(c[j]-c[i]));  
    26       }  
    27     printf("%d
    ",min(f[1][n][0],f[1][n][1]));  
    28     return 0;  
    29 }   
  • 相关阅读:
    文件管理系统(JQuery插件+Ajax)
    十大Ajax框架
    WSS3.0开发你还在为写CAML痛苦吗?
    vue获取微博授权的URL
    微博三方登录原理
    阿里云短信服务
    JWT原理和COOKIE原理
    django数据库的ORM操作
    celery原理与组件
    生成微博授权URL
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/7476678.html
Copyright © 2011-2022 走看看