zoukankan      html  css  js  c++  java
  • HDU 6333:Harvest of Apples

    Problem B. Harvest of Apples

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 347    Accepted Submission(s): 121
    Problem Description
    There are $n$ apples on a tree, numbered from $1$ to $n$.
    Count the number of ways to pick at most $m$ apples.
     
    Input
    The first line of the input contains an integer $T$ $(1 le T le 10 ^ 5)$ denoting the number of test cases.
    Each test case consists of one line with two integers $n, m$ $(1 le m le n le 10 ^ 5)$.
     
    Output
    For each test case, print an integer representing the number of ways modulo $10 ^ 9 + 7$.
     
    Sample Input
    2 5 2 1000 500
     
    Sample Output
    16 924129523
     
    Source
     
    Recommend
    chendu
     
    分析:这题显然暴力O(n^2)是要TLE的,比赛的时候考虑简单数学优化一下变成2.5e9,显然肯定也是要TLE的。后来考虑深度数学优化得出:
    其中F1表示超几何函数。。。然而找了半个多小时没有找到C++的模板。。就很绝望
    补题的时候发现可以用莫队和分块去搞,学了半天嘤嘤嘤,太菜了。
    #include <iostream>
    #include <string>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <map>
    #define LL long long
    #define elif else if
    #define range(i,a,b) for(auto i=a;i<=b;++i)
    #define rerange(i,a,b) for(auto i=a;i>=b;--i)
    #define itrange(i,a,b) for(auto i=a;i!=b;++i)
    #define fill(arr,tmp) memset(arr,tmp,sizeof(arr))
    using namespace std;
    int t,n,m,block[int(2e5)],interval,id=1;
    struct query{
        int n,k,i;
    }Q[int(1e5+5)];
    vector<query>ll[int(1e5+5)];
    bool cmp(query a,query b){
        return a.n<b.n;
    }
    const int mod=int(1e9+7);
    LL fac[int(1e5+5)],inv[int(1e5+5)],ans[int(1e5+5)];
    LL q_pow(LL a,LL b){
        if(b<0)return 0;
        LL ret=1;
        a%=mod;
        while(b){
            ret=b&1?ret*a%mod:ret;
            b>>=1;
            a=a*a%mod;
        }
        return ret;
    }
    LL C(LL n,LL m){
        if(n<m)return 0;
        return fac[n]*inv[m]%mod*inv[n-m]%mod;
    }
    void init(){
        fac[0]=1;
        range(i,1,int(1e5))fac[i]=fac[i-1]*i%mod;
        inv[int(1e5)]=q_pow(fac[int(1e5)],mod-2);
        rerange(i,int(1e5-1),0)inv[i]=inv[i+1]*(i+1)%mod;
        interval=int(sqrt(1e5));
        for(int i=1;i<=int(1e5);i+=interval,++id)
            for(int j=i;j<i+interval and j<=int(1e5);++j)block[j]=id;
        --id;
        scanf("%d",&t);
        range(i,1,t){
            scanf("%d%d",&(Q+i)->n,&(Q+i)->k);
            (Q+i)->i=i;
            ll[block[Q[i].k]].push_back(Q[i]);
        }
    }
    void solve(){
        range(i,1,id)
            if(ll[i].size()){
                sort(ll[i].begin(),ll[i].end(),cmp);
                LL val=0,in=ll[i][0].n,ik=-1;
                range(j,0,ll[i].size()-1){
                    while(in<ll[i][j].n)val=((val<<1)+mod-C(in++,ik))%mod;
                    while(ik<ll[i][j].k)val=(val+C(in,++ik))%mod;
                    while(ik>ll[i][j].k)val=(val+mod-C(in,ik--))%mod;
                    ans[ll[i][j].i]=val;
                }
            }
        range(i,1,t)printf("%lld
    ",ans[i]);
    }
    int main() {
        init();
        solve();
        return 0;
    }
    View Code
  • 相关阅读:
    使用事物码SAT检测SAP CRM中间件的传输性能
    显示SAP CRM Product hierarchy的一个小工具
    如何使用SAP CRM中间件从ERP往CRM下载Service Master
    SAP CL_CRM_BOL_ENTITY单元测试方法
    SAP CRM错误消息 Specify at least one number for the business partner
    Java注解@Autowired的工作原理
    Spring里component-scan的工作原理
    Spring框架里解析配置文件的准确位置
    SAP CRM状态字段下拉列表里数据的填充原理
    用户自定义协议client/server代码示例
  • 原文地址:https://www.cnblogs.com/Rhythm-/p/9403788.html
Copyright © 2011-2022 走看看