转自:http://blog.csdn.net/qq_32166627/article/details/52734387
侵删。
tensorflow中有一类在tensor的某一维度上求值的函数。如:
求最大值tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None)
求平均值tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)
参数(1)input_tensor:待求值的tensor。
参数(2)reduction_indices:在哪一维上求解。
参数(3)(4)可忽略
举例说明:
# 'x' is [[1., 2.]
# [3., 4.]]
x是一个2维数组,分别调用reduce_*函数如下:
首先求平均值,
tf.reduce_mean(x) ==> 2.5 #如果不指定第二个参数,那么就在所有的元素中取平均值
tf.reduce_mean(x, 0) ==> [2., 3.] #指定第二个参数为0,则第一维的元素取平均值,即每一列求平均值
tf.reduce_mean(x, 1) ==> [1.5, 3.5] #
指定第二个参数为1,则第二维的元素取平均值,即每一行求平均值
同理,还可用tf.reduce_max()求最大值。