zoukankan      html  css  js  c++  java
  • 【KDD2018论文】 基于强化学习技术的智能派单模型 阅读笔记

    回顾KDD2017

    A Taxi Order Dispatch Model based On Combinatorial Optimization

    最大化全局的匹配概率

    基于贝叶斯框架来预测用户目的地

    KDD2018

    Large-Scale Order Dispatch in On-Demand Ride-Hailing Platforms: A Learning and Planning Approach
    MDP+组合优化,value function 与 匹配组合优化的目标函数结合

    一、 Learning(离线):序列决策 (Sequential Decision Making) 问题

    • 收集历史数据中的订单信息,表示为强化学习中的四元组形式;

    • 使用动态规划求解value function。将价值函数以查找表 (lookup table) 形式保存以供线上使用。

    image-20200203181550076

    二、 Planning(在线):

    • 收集待分配的司机和订单列表;

    • 计算每个司乘匹配对应的State-Action Function Q(s,a) ,优化为advantage function A(s,a) ,并以此为权重建立二分图;

    • 将上述匹配权值作为权重嵌入 KM 算法,充分考虑接驾距离、服务分等因素,求解最优匹配,进入最终派单环节。

    image-20200203182509365

    image-20200203183723212

    三、 Combining(迭代):

    步骤 3 迭代重复进行 1 和 2,即根据新积累的数据离线更新价值函数,和使用更新后的价值函数指导派单的过程。

    Details

    空间分片方式:

    一般处理方式都是采用六边形格子 ( google S2 ) 对地图进行划分,单独的格子可能会有稀疏问题,因此可以对相邻的格子依据供需状况做聚类,最终作为统一的空间分片。

    advantage function的考虑因素:

    • 订单价格,高价格订单会更具有优势,Rγ(j)Rγ(j);
    • 司机位置,司机当前的位置有一个负的影响,−V(si)−V(si),因此,在相同的条件下,司机在更小价值的位置更容易被选择服务订单;
    • 订单目的地,选择高价值地区的目的地的订单更有优势,因为它会有一个更大的V(s′ij)V(sij′);
    • 接乘客的距离,接乘客的距离也会影响advantage function,更长的距离需要更多的时间来接乘客,使得订单的未来价值降低,总体的值降低。

    其他解读

    [1] 滴滴 KDD 2018 论文详解:基于强化学习技术的智能派单模型

    [2] 基于 “ 滴滴 KDD 2018 论文:基于强化学习技术的智能派单模型 ” 再演绎

    [3] Dispatching-in-Didichuxing-2

    [4] [高效的多维空间点索引算法 — Geohash 和 Google S2](

  • 相关阅读:
    获取某表所有列名和字段类型
    C++ 长指针与指针的区别
    C# WinForm 控件光标
    不错的UML建模工具StarUML
    给控件做数字签名之一:将控件打包为Web发布包(转)
    MsComm控件注册失败
    微软发布Microsoft图表控件
    C与C++中的宏
    WinForm DataGridView 显示行号
    C#ToString格式大全
  • 原文地址:https://www.cnblogs.com/Ryan0v0/p/12255306.html
Copyright © 2011-2022 走看看