zoukankan      html  css  js  c++  java
  • 李宏毅老师regression部分全部

    1. where does the error come from?

     error due to "bias" and "variance"

     variance:

    simple model  :   small variance

    complex model  :  large variance

    simple model is less influenced by the sampled data

    bais:

     if we average all the f*, is it close to f^?

    simple model  :   large bais

    complex model  :  small   bais

     diagnosis:

    if your model cannot even fit the training examples,then your model have lager bias

    if your model fit the train data,but lager error on testing data,then you probably have lager variance

    for bias,redesign your model:    •add more feature as input

                                                       •a more complex model

    for variance: •more data

    2.cross validation & N-fold cross validation

     N-fold cross validation

    3.gradient descent

     1.tuning your learning learing rate

     

     2.adaptive learning rate

    popular & simple idea:reduce the learning rate by some factor every few epochs

      •at the begining,we are far from the destination,so we use larger learning rate

      •after several epochs,we close to the destination,so we reduce the learning rate

      •E.g.  Π=Π/(1+t)½

    •learning rate cannot be one-size-fits-all

      •giving different parameters different learning rates

    •adagrad
    Divide the learning rate of each paramenter by the root mean square of its previaous derivatives

                                            wt+1=wttgtt

    Πt=Π/(1+t)½       gt=∂L(θ)/∂w    σt=((1+t)-1Σ(gi)²)½

                                           wt+1=wt-Πgt/(Σ(gi)²)½

    3.stochastic gradient  descent

    pick a example xn

              Ln=(y^n-(b+Σwixin))2

    loss only for one example

    4.feature scaling

    make different feature have the same scaling

  • 相关阅读:
    putty GB18030乱码
    iptables小复习
    编译安装 openswan-2.6.34
    Windows常用的命令
    MySql实现远程连接
    防盗链
    java判断一个类是否公共类
    oracle sql性能
    状态模式让我们远离战战兢兢
    LVM管理
  • 原文地址:https://www.cnblogs.com/SAM-CJM/p/13808627.html
Copyright © 2011-2022 走看看