zoukankan      html  css  js  c++  java
  • 李宏毅老师regression部分全部

    1. where does the error come from?

     error due to "bias" and "variance"

     variance:

    simple model  :   small variance

    complex model  :  large variance

    simple model is less influenced by the sampled data

    bais:

     if we average all the f*, is it close to f^?

    simple model  :   large bais

    complex model  :  small   bais

     diagnosis:

    if your model cannot even fit the training examples,then your model have lager bias

    if your model fit the train data,but lager error on testing data,then you probably have lager variance

    for bias,redesign your model:    •add more feature as input

                                                       •a more complex model

    for variance: •more data

    2.cross validation & N-fold cross validation

     N-fold cross validation

    3.gradient descent

     1.tuning your learning learing rate

     

     2.adaptive learning rate

    popular & simple idea:reduce the learning rate by some factor every few epochs

      •at the begining,we are far from the destination,so we use larger learning rate

      •after several epochs,we close to the destination,so we reduce the learning rate

      •E.g.  Π=Π/(1+t)½

    •learning rate cannot be one-size-fits-all

      •giving different parameters different learning rates

    •adagrad
    Divide the learning rate of each paramenter by the root mean square of its previaous derivatives

                                            wt+1=wttgtt

    Πt=Π/(1+t)½       gt=∂L(θ)/∂w    σt=((1+t)-1Σ(gi)²)½

                                           wt+1=wt-Πgt/(Σ(gi)²)½

    3.stochastic gradient  descent

    pick a example xn

              Ln=(y^n-(b+Σwixin))2

    loss only for one example

    4.feature scaling

    make different feature have the same scaling

  • 相关阅读:
    Angular 11 中 Schematics 的代码优化
    GoEasy使用阿里云OSS出现的问题
    易班模拟登录-Day1笔记
    类型别名与接口
    TypeScript中的数据类型
    Javascript类型系统
    手写Promise3
    手写Promise2
    手写Promise1
    Promise基础用法2
  • 原文地址:https://www.cnblogs.com/SAM-CJM/p/13808627.html
Copyright © 2011-2022 走看看