题目:
Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j<=n),which is 0 or 1.
Besides,X ij meets the following conditions:
1.X 12+X 13+...X 1n=1
2.X 1n+X 2n+...X n-1n=1
3.for each i (1<i<n), satisfies ∑X ki (1<=k<=n)=∑X ij (1<=j<=n).
For example, if n=4,we can get the following equality:
X 12+X 13+X 14=1
X 14+X 24+X 34=1
X 12+X 22+X 32+X 42=X 21+X 22+X 23+X 24
X 13+X 23+X 33+X 43=X 31+X 32+X 33+X 34
Now ,we want to know the minimum of ∑C ij*X ij(1<=i,j<=n) you can get.
Hint
For sample, X 12=X 24=1,all other X ij is 0.
思路:对于给的矩阵和等式可以这么理解,给的矩阵C看作距离矩阵,表示两点之间边的距离,
等式① -> 点1的出度为1
等式② -> 点n的入度为1
等式③ -> 点2 ~ n-1 的入度等于出度
而Xij是一个01矩阵,即任意两点之间是否有变存在,则 ∑C ij*X ij容易理解为一条路径的长度,而这条路径有两种情况:
A:点1出发到达点n的最短距离,记作ans。
B:点1出发回到点1的最短距离,点n出发回到点n最短距离,两个环的答案相加:d1 + d2。
最后的答案就是 min(A, B)。
如何得出环的最小距离呢,我们可以用spfa,让出发点的dis[start] = INF,然后其他点就是dis[v] = dis[start][v],
最后dis[start]就是换的最小距离。
1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 #include <queue> 5 #include <vector> 6 #include <cmath> 7 8 using namespace std; 9 10 #define ll long long 11 #define pb push_back 12 #define fi first 13 #define se second 14 15 const int N = 310; 16 const int INF = 1e9; 17 int G[N][N]; 18 int dis[N]; 19 bool vis[N]; 20 queue<int > que; 21 int n; 22 23 int SPFA(int s) 24 { 25 for(int i = 1; i <= n; ++i){ 26 if(i == s){ 27 vis[i] = false; 28 dis[i] = INF; 29 }else{ 30 vis[i] = true; 31 dis[i] = G[s][i]; 32 que.push(i); 33 } 34 } 35 36 while(!que.empty()){ 37 int now = que.front(); 38 que.pop(); 39 vis[now] = false; 40 41 for(int i = 1; i <= n; ++i){ 42 if(dis[i] > dis[now] + G[now][i]){ 43 dis[i] = dis[now] + G[now][i]; 44 if(!vis[i]) que.push(i); 45 } 46 } 47 } 48 49 return dis[s]; 50 } 51 52 void solve() 53 { 54 while(~scanf("%d", &n)){ 55 for(int i = 1; i <= n; ++i){ 56 for(int j = 1; j <= n; ++j) 57 scanf("%d", &G[i][j]); 58 } 59 60 int d1 = SPFA(1); 61 int ans = dis[n]; 62 int d2 = SPFA(n); 63 //printf("dis = %d ", min(d1 + d2, ans)); 64 printf("%d ", min(d1 + d2, ans)); 65 } 66 } 67 68 int main() 69 { 70 71 solve(); 72 73 return 0; 74 }