内需消费
题目链接:ybtoj高效进阶 21278
题目大意
给你一个数组,然后要你支持两个操作,修改某一个位置的值,或者询问从一个地方走到另一个地方的最大分数。
分数是你从一个地方沿着数组走,可以选择买入卖出或不变,然后同一时刻只能买入一件东西,资金无限。
思路
考虑单个怎么搞,不难想到是 DP,设 (f_{i,0/1}) 表示当前在 (i),身上没有或有东西的分数。
(f_{i,0}=max{f_{i-1,0},f_{i-1,1}+a_i})
(f_{i,1}=max{f_{i-1,0}-a_i,f_{i-1,1}})
发现它只跟前面一个有关,而且似乎可以用矩阵转换?
当然不是矩阵乘法,我们广义一下,之前是乘了加起来,现在是加了求最大值。
然后你可以用一个线段树维护一个区间的矩阵,然后每次拎出来一段区间,或者修改一个值的位置就好了。
代码
#include<cstdio>
#include<iostream>
using namespace std;
struct matrix {
int n, m;
int a[3][3];
}t[100001 << 2], t_[100001 << 2];
int n, m, v[100001];
int op, x, y;
matrix operator *(matrix x, matrix y) {//广义矩阵乘法
matrix re;
re.n = x.n; re.m = y.m;
for (int i = 1; i <= re.n; i++)
for (int j = 1; j <= re.m; j++)
re.a[i][j] = -2e9;
for (int k = 1; k <= x.m; k++)
for (int i = 1; i <= re.n; i++)
for (int j = 1; j <= re.m; j++)
re.a[i][j] = max(re.a[i][j], x.a[i][k] + y.a[k][j]);
return re;
}
void up(int now) {//线段树
t[now] = t[now << 1] * t[now << 1 | 1];
}
void build(int now, int l, int r) {
if (l == r) {
t[now].n = t[now].m = 2;
t[now].a[1][1] = 0; t[now].a[1][2] = -v[l];
t[now].a[2][1] = v[l]; t[now].a[2][2] = 0;
return ;
}
int mid = (l + r) >> 1;
build(now << 1, l, mid);
build(now << 1 | 1, mid + 1, r);
up(now);
}
void change(int now, int l, int r, int pl) {
if (l == r) {
t[now].n = t[now].m = 2;
t[now].a[1][1] = 0; t[now].a[1][2] = -v[l];
t[now].a[2][1] = v[l]; t[now].a[2][2] = 0;
return ;
}
int mid = (l + r) >> 1;
if (pl <= mid) change(now << 1, l, mid, pl);
else change(now << 1 | 1, mid + 1, r, pl);
up(now);
}
matrix query(int now, int l, int r, int L, int R) {
if (L <= l && r <= R) return t[now];
int mid = (l + r) >> 1;
if (L > mid) return query(now << 1 | 1, mid + 1, r, L, R);
if (mid >= R) return query(now << 1, l, mid, L, R);
return query(now << 1, l, mid, L, R) * query(now << 1 | 1, mid + 1, r, L, R);
}
void up_(int now) {
t_[now] = t_[now << 1] * t_[now << 1 | 1];
}
void build_(int now, int l, int r) {
if (l == r) {
t_[now].n = t_[now].m = 2;
t_[now].a[1][1] = 0; t_[now].a[1][2] = -v[n - l + 1];
t_[now].a[2][1] = v[n - l + 1]; t_[now].a[2][2] = 0;
return ;
}
int mid = (l + r) >> 1;
build_(now << 1, l, mid);
build_(now << 1 | 1, mid + 1, r);
up_(now);
}
void change_(int now, int l, int r, int pl) {
if (l == r) {
t_[now].n = t_[now].m = 2;
t_[now].a[1][1] = 0; t_[now].a[1][2] = -v[n - l + 1];
t_[now].a[2][1] = v[n - l + 1]; t_[now].a[2][2] = 0;
return ;
}
int mid = (l + r) >> 1;
if (pl <= mid) change_(now << 1, l, mid, pl);
else change_(now << 1 | 1, mid + 1, r, pl);
up_(now);
}
matrix query_(int now, int l, int r, int L, int R) {
if (L <= l && r <= R) return t_[now];
int mid = (l + r) >> 1;
if (L > mid) return query_(now << 1 | 1, mid + 1, r, L, R);
if (mid >= R) return query_(now << 1, l, mid, L, R);
return query_(now << 1, l, mid, L, R) * query_(now << 1 | 1, mid + 1, r, L, R);
}
int main() {
// freopen("trade.in", "r", stdin);
// freopen("trade.out", "w", stdout);
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &v[i]);
build(1, 1, n);
build_(1, 1, n);
while (m--) {
scanf("%d", &op);
if (op == 1) {
scanf("%d %d", &x, &y);
if (x <= y) printf("%d
", query(1, 1, n, x, y).a[1][1]);
else printf("%d
", query_(1, 1, n, n - x + 1, n - y + 1).a[1][1]);
}
if (op == 2) {
scanf("%d %d", &x, &y);
v[x] = y;
change(1, 1, n, x);
change_(1, 1, n, n - x + 1);
}
}
return 0;
}