zoukankan      html  css  js  c++  java
  • 软工划水日报-安卓端侧部署(3) 4/25

    今天我们尝试了paddle-lite框架,发现意外可行

    那么我们来写一下图像预处理函数:

    package com.example.ironfarm;
    
    import android.graphics.Bitmap;
    import android.graphics.BitmapFactory;
    import android.graphics.Matrix;
    import android.util.Log;
    
    import com.baidu.paddle.lite.MobileConfig;
    import com.baidu.paddle.lite.PaddlePredictor;
    import com.baidu.paddle.lite.PowerMode;
    import com.baidu.paddle.lite.Tensor;
    
    import java.io.File;
    import java.io.FileInputStream;
    import java.util.Arrays;
    
    public class PaddleLiteClassification {
        private static final String TAG = PaddleLiteClassification.class.getName();
    
        private PaddlePredictor paddlePredictor;
        private Tensor inputTensor;
        private long[] inputShape = new long[]{1, 3, 224, 224};
        private static float[] scale = new float[]{1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
        private static float[] inputMean = new float[]{0.485f, 0.456f, 0.406f};
        private static float[] inputStd = new float[]{0.229f, 0.224f, 0.225f};
        private static final int NUM_THREADS = 4;
    
        /**
         * @param modelPath model path
         */
        public PaddleLiteClassification(String modelPath) throws Exception {
            File file = new File(modelPath);
            if (!file.exists()) {
                throw new Exception("model file is not exists!");
            }
            try {
                MobileConfig config = new MobileConfig();
                config.setModelFromFile(modelPath);
                config.setThreads(NUM_THREADS);
                config.setPowerMode(PowerMode.LITE_POWER_HIGH);
                paddlePredictor = PaddlePredictor.createPaddlePredictor(config);
    
                inputTensor = paddlePredictor.getInput(0);
                inputTensor.resize(inputShape);
            } catch (Exception e) {
                e.printStackTrace();
                throw new Exception("load model fail!");
            }
        }
    
        public float[] predictImage(String image_path) throws Exception {
            if (!new File(image_path).exists()) {
                throw new Exception("image file is not exists!");
            }
            FileInputStream fis = new FileInputStream(image_path);
            Bitmap bitmap = BitmapFactory.decodeStream(fis);
            float[] result = predictImage(bitmap);
            if (bitmap.isRecycled()) {
                bitmap.recycle();
            }
            return result;
        }
    
        public float[] predictImage(Bitmap bitmap) throws Exception {
            return predict(bitmap);
        }
    
        public static int getMaxResult(float[] result) {
            float probability = 0;
            int r = 0;
            for (int i = 0; i < result.length; i++) {
                if (probability < result[i]) {
                    probability = result[i];
                    r = i;
                }
            }
            return r;
        }
    
        private static float[] getScaledMatrix(Bitmap bitmap, int desWidth, int desHeight) {
            float[] dataBuf = new float[3 * desWidth * desHeight];
            int rIndex;
            int gIndex;
            int bIndex;
            int[] pixels = new int[desWidth * desHeight];
            Bitmap bm = Bitmap.createScaledBitmap(bitmap, desWidth, desHeight, false);
            bm.getPixels(pixels, 0, desWidth, 0, 0, desWidth, desHeight);
            int j = 0;
            int k = 0;
            for (int i = 0; i < pixels.length; i++) {
                int clr = pixels[i];
                j = i / desHeight;
                k = i % desWidth;
                rIndex = j * desWidth + k;
                gIndex = rIndex + desHeight * desWidth;
                bIndex = gIndex + desHeight * desWidth;
                // 转成RGB通道顺序
                dataBuf[bIndex] = (float) (((clr & 0x00ff0000) >> 16) / 255.0);
                dataBuf[gIndex] = (float) (((clr & 0x0000ff00) >> 8) / 255.0);
                dataBuf[rIndex] = (float) (((clr & 0x000000ff)) / 255.0);
            }
            if (bm.isRecycled()) {
                bm.recycle();
            }
            Log.d("sss",  Arrays.toString(dataBuf));
            return dataBuf;
        }
    
        private Bitmap getScaleBitmap(Bitmap bitmap) {
            int bmpWidth = bitmap.getWidth();
            int bmpHeight = bitmap.getHeight();
            int size = (int) inputShape[2];
            float scaleWidth = (float) size / bitmap.getWidth();
            float scaleHeight = (float) size / bitmap.getHeight();
            Matrix matrix = new Matrix();
            matrix.postScale(scaleWidth, scaleHeight);
            return Bitmap.createBitmap(bitmap, 0, 0, bmpWidth, bmpHeight, matrix, true);
        }
    
        private float[] predict(Bitmap bmp) throws Exception {
            Bitmap b = getScaleBitmap(bmp);
            float[] inputData = getScaledMatrix(b, (int) inputShape[2], (int) inputShape[3]);
            b.recycle();
            bmp.recycle();
            inputTensor.setData(inputData);
    
            try {
                paddlePredictor.run();
            } catch (Exception e) {
                throw new Exception("predict image fail! log:" + e);
            }
            Tensor outputTensor = paddlePredictor.getOutput(0);
            float[] result = outputTensor.getFloatData();
            Log.d(TAG, Arrays.toString(result));
            int l = getMaxResult(result);
            return new float[]{l, result[l]};
    //        return result;
        }
    }

    这个函数的核心就是对拍照/相册的图像进行各种预处理转化成float数组……其实是通过rgb颜色来进行的预测

    好,今天就努力到这里啦

  • 相关阅读:
    Spring_配置 Bean(2)
    Spring_HelloWorld
    搭建 Spring 开发环境
    MongoDB快速入门(十三)- 聚合count、distinct和group
    缓存技术,封装好的缓存类
    HTTP协议详解
    C# 缓存技术
    Web Service 的工作原理
    webview长按保存图片
    android Webview 实现js调用java代码实现Activity跳转
  • 原文地址:https://www.cnblogs.com/Sakuraba/p/14910214.html
Copyright © 2011-2022 走看看