zoukankan      html  css  js  c++  java
  • The Nth Item (The 2019 Asia Nanchang First Round Online Programming Contest)

    #include<cstdio>
    #include<cmath>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<map>
    #include<vector>
    using namespace std;
    typedef  long long ll;
    typedef vector<ll>vec;
    typedef vector<vec>mat;
    ll M=998244353;
    map<ll,ll>cc;
    mat mul(mat &A,mat &B){
    mat C(A.size(),vec(B[0].size()));
    for(int i=0;i<A.size();i++)
        for(int k=0;k<B.size();k++)
        for(int j=0;j<B[0].size();j++)
    {
        C[i][j]=(C[i][j]+A[i][k]*B[k][j])%M;
    }
    return C;
    }
    mat pow(mat A,ll n)
    {
         mat B(A.size(),vec(A.size()));
     for(int i=0;i<A.size();i++)
    {
        B[i][i]=1;
    }
    while(n>0)
    {
        if(n&1) B=mul(B,A);
        A=mul(A,A);
        n>>=1;
    
    }
    return B;
    }
    map<ll,ll>kkk;
    int main()
    {
        mat A(2,vec(2));
        A[0][0]=3,A[0][1]=2,A[1][0]=1,A[1][1]=0;
        mat B(2,vec(2));
        ll q,n;
        kkk.clear();
        scanf("%lld%lld",&q,&n);
        ll dns=0,k,kk1;
        while(q--)
        {
               B=pow(A,n);
               ll kk=dns;
              // cout<<B[1][0]<<' '<<n<<endl;;
            dns^=B[1][0];
            kkk[n]=B[1][0];
            n=n^(B[1][0]*B[1][0]);
            if(dns==kk1)
            {
                if(q%2==1)
                    dns=kk;
                else
                    dns=kk1;
                break;
            }
    
                kk1=kk;
            //cout<<dns<<endl;
        }
        printf("%lld
    ",dns);
    }

    For a series FF:

    displaystyle egin{gathered} F(0) = 0,F(1) = 1\ F(n) = 3*F(n-1)+2*F(n-2),(n geq 2) end{gathered}F(0)=0,F(1)=1F(n)=3F(n1)+2F(n2),(n2)

     

    We have some queries. For each query NN, the answer AA is the value F(N)F(N) modulo 998244353998244353.

    Moreover, the input data is given in the form of encryption, only the number of queries QQ and the first query N_1N1are given. For the others, the query N_i(2leq ileq Q)Ni(2iQ) is defined as the xor of the previous N_{i-1}Ni1 and the square of the previous answer A_{i-1}Ai1. For example, if the first query N_1N1 is 22, the answer A_1A1 is 33, then the second query N_2N2 is 2 xor ( 3*3)=112 xor (33)=11.

    Finally, you don't need to output all the answers for every query, you just need to output the xor of each query's answer A_1 xor A_2 ... xor A_QA1 xor A2...xor AQ.

    Input

    The input contains two integers, Q, NQ,N1 leq Q leq 10^7,0 leq N leq 10^{18}1  Q107,0  N1018QQ representing the number of queries and NN representing the first query.

    Output:

    An integer representing the final answer.

    样例输入

    17 473844410

    样例输出

    903193081
    所遇皆星河
  • 相关阅读:
    最近相对闲点,写个笔记2
    最近相对闲点,写个笔记
    ORACLE 调优
    静态工厂方法与构造函数 创建类 区别
    组合与继承 区别
    Java异常
    abstract class 和 interface 区别
    java中的io系统详解
    Tomcat Apache 区别
    Vmware 下的网络模式配置
  • 原文地址:https://www.cnblogs.com/Shallow-dream/p/11488867.html
Copyright © 2011-2022 走看看