思路:
Lucas定理的模板题..
4403
//By SiriusRen #include <cstdio> using namespace std; const int mod=1000003; #define int long long int cases,N,L,R,fac[mod],inv[mod]; int C(int n,int m){ if(n<m)return 0; if(n<mod&&m<mod)return fac[n]*inv[n-m]%mod*inv[m]%mod; return C(n/mod,m/mod)*C(n%mod,m%mod)%mod; } signed main(){ fac[0]=inv[0]=inv[1]=1; for(int i=1;i<mod;i++)fac[i]=fac[i-1]*i%mod; for(int i=2;i<mod;i++)inv[i]=(mod-mod/i)*inv[mod%i]%mod; for(int i=1;i<mod;i++)inv[i]=inv[i-1]*inv[i]%mod; scanf("%lld",&cases); while(cases--)scanf("%lld%lld%lld",&N,&L,&R),printf("%lld ",(C(N+R-L+1,R-L+1)-1+mod)%mod); }
2982
//By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define int long long const int p=10007; int fac[p],inv[p],n,m,cases; int C(int i,int j){ if(i<j)return 0; if(i<p&&j<p)return fac[i]*inv[j]%p*inv[i-j]%p; return C(i/p,j/p)*C(i%p,j%p)%p; } signed main(){ fac[0]=fac[1]=inv[0]=inv[1]=1; for(int i=2;i<p;i++)fac[i]=fac[i-1]*i%p; for(int i=2;i<p;i++)inv[i]=(p-p/i)*inv[p%i]%p; for(int i=1;i<p;i++)inv[i]=inv[i-1]*inv[i]%p; scanf("%lld",&cases); while(cases--){ scanf("%lld%lld",&n,&m); printf("%lld ",C(n,m)); } }