zoukankan      html  css  js  c++  java
  • Lehmer Code

    According to Wikipedia: "In mathematics and in particular in combinatorics, the Lehmer code is a particular way to encode each possible permutation of a sequence of n numbers." To be more specific, for a given permutation of items {A1​​, A2​​, ⋯, An​​}, Lehmer code is a sequence of numbers {L1​​, L2​​, ⋯, Ln​​} such that Li​​ is the total number of items from Ai​​ to An​​ which are less than Ai​​. For example, given { 24, 35, 12, 1, 56, 23 }, the second Lehmer code L2​​ is 3 since from 35 to 23 there are three items, { 12, 1, 23 }, less than the second item, 35.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N (≤). Then N distinct numbers are given in the next line.

    Output Specification:

    For each test case, output in a line the corresponding Lehmer code. The numbers must be separated by exactly one space, and there must be no extra space at the beginning or the end of the line.

    Sample Input:

    6
    24 35 12 1 56 23
    
     

    Sample Output:

    3 3 1 0 1 0
     1 #include<bits/stdc++.h>
     2 #include<ext/pb_ds/assoc_container.hpp>
     3 #include<ext/pb_ds/tree_policy.hpp>
     4 using namespace __gnu_pbds;
     5 using namespace std;
     6 int main()
     7 {
     8 //    freopen("data.txt","r",stdin);
     9     int n,x,c1,c2;
    10     tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update> tr;
    11     scanf("%d",&n);
    12     vector<int> v(n);
    13     for(int i=0;i<n;i++)
    14     scanf("%d",&v[i]);
    15     for(int i=n-1;i>-1;i--)
    16     {
    17         tr.insert(v[i]);
    18         v[i]=tr.order_of_key(v[i]);
    19     }
    20     printf("%d",v[0]);
    21     for(int i=1;i<n;++i)
    22     printf(" %d",v[i]);
    23     return 0;
    24 }
    诚者,君子之所守也。
  • 相关阅读:
    Java:多线程<一>
    Java:Exception
    Java: 内部类
    Ubuntu安装jdk
    ubuntu搜狗拼音安装
    录音-树莓派USB摄像头话筒
    leetcode 最小栈
    leetcode 编辑距离 动态规划
    leetcode 最小覆盖字串
    leetcode 最长上升子序列 动态规划
  • 原文地址:https://www.cnblogs.com/SkystarX/p/12285803.html
Copyright © 2011-2022 走看看