zoukankan      html  css  js  c++  java
  • Quadratic equation(二次剩余定理)

    题目描述

    Amy asks Mr. B  problem B. Please help Mr. B to solve the following problem.

    Let p = 1000000007.
    Given two integers b and c, please find two integers x and y(0≤x≤y<p)(0 leq x leq y < p)(0xy<p), such that
    (x+y) mod p=b(x + y) mod p = b(x+y)modp=b
    (x×y) mod p=c(x imes y) mod p = c(x×y)modp=c

    输入描述:

    The first line contains an integer t, which is the number of test cases (1 <= t <= 10).

    In the following t lines, each line contains two integers b and c (0 <= b, c < p).

    输出描述:

    For each test case, please output x, y in one line.
    If there is a solution, because x <= y, the solution is unique.

    If there is no solution, please output -1, -1
    示例1

    输入

    复制
    10
    4 4
    5 6
    10 10
    10 25
    20000 100000000
    0 5
    3 6
    220 284
    0 1
    1000000000 1000000000
    

    输出

    复制
    2 2
    2 3
    -1 -1
    5 5
    10000 10000
    474848249 525151758
    352077071 647922939
    448762649 551237578
    -1 -1
    366417496 633582504


    解题报告:这道题目一开始很容易就想到要去求解x-y,但是呢简单的求解根据b*b-4*c是错误的,因为咱们没有办法去判断是否存在解,后来想到了一个定理
    就是二次剩余定理,但是奈何实力弱,只能判断出来是否存在解的情况,没有办法去实现二次剩余定理的答案的求解,最后隔壁队给了一个能够看懂得板子,才
    成功得求出答案,然后因为是(x+y)%mod = b,x>=0&&x<mod y>=0&&y<mod ,所以x+y存在两种答案,一种就是 x+y=b 另一种就是(x+y)=mod+b; 使用
    二次剩余定理会出现两个解,所以也需要去进行讨论,一共存在四种情况,进行一下分类讨论,判定一下每组x,y的解的范围和正确性,需要非常注意的就是咱们
    的答案是根据(x+y)%mod=b实现的,而(x*y)%mod ==c 的条件没有使用,所以在这个判断的时候就需要去使用一下,否则就会疯狂wa,and每组解的求解的时
    候不需要再进行取余处理了,这个时候的解就不再是mod 的情况了,而是本身就是这个等式。

    ac代码:
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<algorithm>
     5 #include<cmath>
     6 using namespace std;
     7 typedef long long ll;
     8 
     9 const ll mod=1e9+7;
    10 
    11 int t;
    12 ll b,c;
    13 
    14 ll qpow(ll a,ll b,ll p){
    15     ll ans=1;
    16     while(b){
    17         if(b&1) ans=ans*a%p;
    18         a=a*a%p;
    19         b>>=1;
    20     }
    21     return ans;
    22 }
    23 ll modsqr(ll a,ll n){
    24     ll b,k,i,x;
    25     if(n==2) return a%n;
    26     if(qpow(a,(n-1)/2,n) == 1){
    27         if(n%4 == 3){
    28             x=qpow(a,(n+1)/4,n);
    29         }
    30         else{
    31             for(b=1; qpow(b,(n-1)/2,n) == 1; b++);
    32             i = (n-1)/2;
    33             k=0;
    34             while(i%2==0){
    35                 i /= 2,k /= 2;
    36                 if((qpow(a,i,n)*qpow(b,k,n)+1)%n == 0) k += (n-1)/2;
    37             }
    38             x = qpow(a,(i+1)/2,n)*qpow(b,k/2,n)%n;
    39         }
    40         if(x*2 > n) x = n-x;
    41         return x;
    42     }
    43     return -1;
    44 }
    45 
    46 int main()
    47 {
    48     cin>>t;
    49     while(t--)
    50     {
    51         cin>>b>>c;
    52         ll tmp1=(b*b-4*c+4*mod)%mod;
    53         ll flag=modsqr(tmp1,mod);
    54         if(b*b-4*c==0)
    55             flag=0;
    56         if(flag==-1)//二次剩余判断是否有解 
    57         {
    58             cout<<"-1 -1"<<endl;
    59             continue;
    60         }
    61         else
    62         {
    63             ll tmp=mod-flag;
    64             ll y1=(b+flag)/2;
    65             ll x1=(b-flag)/2;
    66             //cout<<x1<<" "<<y1<<endl;
    67             ll y2=(b+tmp)/2;
    68             ll x2=(b-tmp)/2;
    69             ll y3=(mod+b+flag)/2;
    70             ll x3=(mod+b-flag)/2;
    71             ll y4=(2*mod+b-flag)/2;
    72             ll x4=(b+flag)/2;
    73             
    74             if(x1<=y1&&x1<mod&&x1>=0&&y1<mod&&y1>=0&&(x1*y1)%mod==c)
    75             {
    76                 cout<<x1<<" "<<y1<<endl;
    77             }
    78             else if(x2<=y2&&x2<mod&&x2>=0&&y2<mod&&y2>=0&&(x2*y2)%mod==c)
    79             {
    80                 cout<<x2<<" "<<y2<<endl; 
    81             }
    82             else if(x3<=y3&&x3<mod&&x3>=0&&y3<mod&&y3>=0&&(x3*y3)%mod==c)
    83             {
    84                 cout<<x3<<" "<<y3<<endl;
    85             }
    86             else if(x4<=y4&&x4<mod&&x4>=0&&y4<mod&&y4>=0&&(x4*y4)%mod==c)
    87             {
    88                 cout<<x4<<" "<<y4<<endl;
    89             }
    90             else
    91             {
    92                 cout<<"-1 -1"<<endl;
    93             }
    94         }
    95     }
    96 }
  • 相关阅读:
    PhoneGap 3.0 官方 安装 方法
    计算机组成
    软件开发瀑布模型
    国内源码下载地址(转载)
    阿里云ECS 介绍
    云端搭建Linux学习环境 链接https://edu.aliyun.com/article/19 (阿里云ECS服务器 )课堂
    阿里云服务器 ECS 部署lamp:centos+apache+mysql+php安装配置方法 (centos7)
    thinkphp 连接数据库 & 实例化模型操作 (下接thinkphp CURD 操作)/慕课
    PHP实现微信公众平台开发—基础篇
    ThinkPHP3.2.3完整版创建前后台入口文件 http://jingyan.baidu.com/article/7e4409533fc1092fc1e2ef53.html
  • 原文地址:https://www.cnblogs.com/Spring-Onion/p/11360483.html
Copyright © 2011-2022 走看看