zoukankan      html  css  js  c++  java
  • CodeForces

    Grigory has nn magic stones, conveniently numbered from 11 to nn. The charge of the ii-th stone is equal to cici.

    Sometimes Grigory gets bored and selects some inner stone (that is, some stone with index ii, where 2≤i≤n−12≤i≤n−1), and after that synchronizes it with neighboring stones. After that, the chosen stone loses its own charge, but acquires the charges from neighboring stones. In other words, its charge cici changes to c′i=ci+1+ci−1−cici′=ci+1+ci−1−ci.

    Andrew, Grigory's friend, also has nn stones with charges titi. Grigory is curious, whether there exists a sequence of zero or more synchronization operations, which transforms charges of Grigory's stones into charges of corresponding Andrew's stones, that is, changes cici into titi for all ii?

    Input

    The first line contains one integer nn (2≤n≤1052≤n≤105) — the number of magic stones.

    The second line contains integers c1,c2,…,cnc1,c2,…,cn (0≤ci≤2⋅1090≤ci≤2⋅109) — the charges of Grigory's stones.

    The second line contains integers t1,t2,…,tnt1,t2,…,tn (0≤ti≤2⋅1090≤ti≤2⋅109) — the charges of Andrew's stones.

    Output

    If there exists a (possibly empty) sequence of synchronization operations, which changes all charges to the required ones, print "Yes".

    Otherwise, print "No".

    Examples

    Input

    4
    7 2 4 12
    7 15 10 12
    

    Output

    Yes
    

    Input

    3
    4 4 4
    1 2 3
    

    Output

    No
    

    Note

    In the first example, we can perform the following synchronizations (11-indexed):

    • First, synchronize the third stone [7,2,4,12]→[7,2,10,12][7,2,4,12]→[7,2,10,12].
    • Then synchronize the second stone: [7,2,10,12]→[7,15,10,12][7,2,10,12]→[7,15,10,12].

    In the second example, any operation with the second stone will not change its charge.

    代码:

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<queue>
    #include<stack>
    #include<vector>
    
    using namespace std;
    
    int a[100005],b[100005],c[100005],d[100005];
    int main()
    {
    	int n;
    	cin>>n;
    	int flag=0;
    	for(int t=1;t<=n;t++)
    	{
    		scanf("%d",&a[t]);
    	}
    	for(int t=1;t<=n;t++)
    	{
    		scanf("%d",&b[t]);
    	}
    	for(int t=1;t<=n-1;t++)
    	{
    		c[t]=a[t+1]-a[t];
    	}
    	for(int t=1;t<=n-1;t++)
    	{
    		d[t]=b[t+1]-b[t];
    	}
    	if(a[1]!=a[1]||a[n]!=b[n])
    	{
    		flag=1;
    	}
    	sort(c+1,c+n);
    	sort(d+1,d+n);
    	for(int t=1;t<=n;t++)
    	{
    		if(c[t]!=d[t])
    		{
    			flag=1;
    		}
    	}
    	if(!flag)
    	{
    		puts("Yes");
    	}
    	else
    	{
    		puts("No");
    	}
    	
    	return 0;
    }
    
  • 相关阅读:
    NGINX高并发配置
    一致性哈希算法——PHP实现代码
    TCP三次握手详解
    一致性哈希算法——转载来自张洋
    ngx_http_upstream_keepalive
    高情商人的十一种表现
    Nginx中的upstream轮询机制介绍
    主从读写分离----mysql-proxy0.8.5安装与配置
    分布式事务XA
    微信小程序API
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/10781806.html
Copyright © 2011-2022 走看看