zoukankan      html  css  js  c++  java
  • LOJ146DFS 序 3,树上差分 1

    LOJ146

    这道题可以说是真的板子题啦

    恩一看就想到了树链剖分,于是乎很快码出了代码

    Code1:

      1 #include <bits/stdc++.h>
      2 #define ll long long
      3 #define ls x << 1
      4 #define rs x << 1 | 1
      5 using namespace std;
      6 ll read() {
      7     ll re = 0, f = 1;
      8     char ch = getchar();
      9     while (ch < '0' || ch > '9') {if (ch == '-') f = -f; ch = getchar();}
     10     while ('0' <= ch && ch <= '9') {re = re * 10 + ch - '0'; ch = getchar();}
     11     return re * f;
     12 }
     13 const int N = 1e6 + 7;
     14 int n, m, r;
     15 int tot, head[N];
     16 ll sum[N << 2], lazy[N << 2];
     17 ll Id, w[N], wt[N], id[N], fa[N], top[N], siz[N], son[N], dep[N];
     18 struct node{
     19     int net, to;
     20 }e[N * 3];
     21 void add(int u, int v) {
     22     e[++tot] = {head[u], v};
     23     head[u] = tot;
     24 }
     25 void dfs1(int u, ll f, ll deep) {
     26     dep[u] = deep;
     27     fa[u] = f;
     28     siz[u] = 1;
     29     int maxson = -1;
     30     for (int i = head[u]; i; i = e[i].net) {
     31         int to = e[i].to;
     32         if (to == f) {
     33             continue;
     34         }
     35         dfs1(to, u, deep + 1);
     36         siz[u] += siz[to];
     37         if (siz[to] > maxson) {
     38             son[u] = to;
     39             maxson = siz[to];
     40         }
     41     }
     42 }
     43 void dfs2(int u, ll topf) {
     44     id[u] = ++Id;
     45     wt[Id] = w[u];
     46     top[u] = topf;
     47     if (!son[u]) {
     48         return;
     49     }
     50     dfs2(son[u], topf);
     51     for (int i = head[u]; i; i = e[i].net) {
     52         int to = e[i].to;
     53         if (to == fa[u] || to == son[u]) {
     54             continue;
     55         }
     56         dfs2(to, to);
     57     }
     58 }
     59 void pushdown(int x, int l, int r) {
     60     if (lazy[x]) {
     61         int mid = (l + r) / 2;
     62         lazy[ls] += lazy[x];
     63         lazy[rs] += lazy[x];
     64         sum[ls] += lazy[x] * (mid - l + 1);
     65         sum[rs] += lazy[x] * (r - mid);
     66         lazy[x] = 0;
     67     }
     68 }
     69 void build(int x, int l, int r) {
     70     if (l == r) {
     71         sum[x] = wt[l];
     72         return;
     73     }
     74     int mid = (l + r) / 2;
     75     build(ls, l, mid), build(rs, mid + 1, r);
     76     sum[x] = sum[ls] + sum[rs];
     77 }
     78 void change(int x, int l, int r, int L, int R, ll v) {
     79     if (R < l || r < L) {
     80         return;
     81     }
     82     if (L <= l && r <= R) {
     83         lazy[x] += v;
     84         sum[x] += v * (r - l + 1);
     85         return;
     86     }
     87     pushdown(x, l, r);
     88     int mid = (l + r) / 2;
     89     if (L <= mid) {
     90         change(ls, l, mid, L, R, v);
     91     }
     92     if (R > mid) {
     93         change(rs, mid + 1, r, L, R, v);
     94     }
     95     sum[x] = sum[ls] + sum[rs];
     96 }
     97 ll query(int x, int l, int r, int L, int R) {
     98     if (R < l || r < L) {
     99         return 0;
    100     }
    101     if (L <= l && r <= R) {
    102         return sum[x];
    103     }
    104     pushdown(x, l, r);
    105     ll re = 0;
    106     int mid = (l + r) / 2;
    107     if (L <= mid) {
    108         re += query(ls, l, mid, L, R);
    109     }
    110     if (R > mid) {
    111         re += query(rs, mid + 1, r, L, R);
    112     }
    113     return re;
    114 }
    115 void Qchange(int x, int y, ll v) {
    116     while (top[x] != top[y]) {
    117         if (dep[top[x]] < dep[top[y]]) {
    118             swap(x, y);
    119         }
    120         change(1, 1, n, id[top[x]], id[x], v);
    121         x = fa[top[x]];
    122     }
    123     if (dep[x] > dep[y]) {
    124         swap(x, y);
    125     }
    126     change(1, 1, n, id[x], id[y], v);
    127 }
    128 ll Squery(int x) {
    129     return query(1, 1, n, id[x], id[x] + siz[x] - 1);
    130 }
    131 int main () {
    132     n = read(), m = read(), r = read();
    133     for (int i = 1; i <= n; i++) {
    134         w[i] = read();
    135     }
    136     for (int i = 1; i < n; i++) {
    137         int u = read(), v = read();
    138         add(u, v), add(v, u);
    139     }
    140     dfs1(r, 0, 1), dfs2(r, r);
    141     build(1, 1, n);
    142     while (m--) {
    143         int o, x, y, z;
    144         o = read();
    145         if (o == 1) {
    146             x = read(), y = read(), z = read();
    147             Qchange(x, y, z);
    148         } else if (o == 2) {
    149             x = read();
    150             printf("%lld
    ", query(1, 1, n, id[x], id[x]));
    151         } else {
    152             x = read();
    153             printf("%lld
    ", Squery(x));
    154         }
    155     }
    156     return 0;
    157 }
    View Code

    正常情况的话就结束了吧

    但是!!(毒瘤啊)我们发现T了一个点,于是乎我用尽了各种优化手段,不过都无济于事,想来是算法上该改进一波了,偷瞄了巨佬的代码发现可以用LCA和树状数组维护。大概是开两个数组维护一下,每一个节点的值就是它子树内修改的值的和加上本身

    Code2:

      1 #include <bits/stdc++.h>
      2 #define ll long long
      3 #define ls x << 1
      4 #define rs x << 1 | 1
      5 using namespace std;
      6 ll read() {
      7     ll re = 0, f = 1;
      8     char ch = getchar();
      9     while (ch < '0' || ch > '9') {if (ch == '-') f = -f; ch = getchar();}
     10     while ('0' <= ch && ch <= '9') {re = re * 10 + ch - '0'; ch = getchar();}
     11     return re * f;
     12 }
     13 const int N = 1e6 + 7;
     14 int n, m, r;
     15 int tot, head[N];
     16 int Id, id[N], fa[N], top[N], siz[N], son[N], dep[N];
     17 ll sum[N], w[N], g[N], f[N];
     18 struct node{
     19     int net, to;
     20 }e[N * 3];
     21 void add(int u, int v) {
     22     e[++tot] = {head[u], v};
     23     head[u] = tot;
     24 }
     25 void dfs1(int u, ll f, ll deep) {
     26     dep[u] = deep;
     27     fa[u] = f;
     28     siz[u] = 1;
     29     int maxson = -1;
     30     for (int i = head[u]; i; i = e[i].net) {
     31         int to = e[i].to;
     32         if (to == f) {
     33             continue;
     34         }
     35         dfs1(to, u, deep + 1);
     36         siz[u] += siz[to];
     37         if (siz[to] > maxson) {
     38             son[u] = to;
     39             maxson = siz[to];
     40         }
     41     }
     42 }
     43 void dfs2(int u, ll topf) {
     44     id[u] = ++Id;
     45     sum[Id] = w[u];
     46     top[u] = topf;
     47     if (!son[u]) {
     48         return;
     49     }
     50     dfs2(son[u], topf);
     51     for (int i = head[u]; i; i = e[i].net) {
     52         int to = e[i].to;
     53         if (to == fa[u] || to == son[u]) {
     54             continue;
     55         }
     56         dfs2(to, to);
     57     }
     58 }
     59 int LCA(int x, int y) {//用树剖求个LCA 
     60     while (top[x] != top[y]) {
     61         if (dep[top[x]] > dep[top[y]]) {
     62             x = fa[top[x]];
     63         } else {
     64             y = fa[top[y]];
     65         }
     66     }
     67     return dep[x] < dep[y] ? x : y;
     68 }
     69 void add(ll *c, int x, ll v) {//注意这里是更新是反向的 
     70     for (int i = x; i > 0; i -= i & -i) {
     71         c[i] += v;
     72     }
     73 }
     74 ll ask(ll *c, ll x) {//查询也是反向的 
     75     ll re = 0;
     76     for (int i = x; i <= n; i += i & -i) {
     77         re += c[i];
     78     }
     79     return re;
     80 }
     81 void change(int x, ll v) {
     82     add(f, id[x], v);
     83     add(g, id[x], v * dep[x]);
     84 }
     85 ll query(int x) {
     86     return ask(g, id[x]) - ask(g, id[x] + siz[x]) - (ask(f, id[x]) - ask(f, id[x] + siz[x])) * (dep[x] - 1);
     87 }
     88 int main () {
     89     n = read(), m = read(), r = read();
     90     for (int i = 1; i <= n; i++) {
     91         w[i] = read();
     92     }
     93     for (int i = 1; i < n; i++) {
     94         int u = read(), v = read();
     95         add(u, v), add(v, u);
     96     }
     97     dfs1(r, 0, 1), dfs2(r, r);
     98     for (int i = n; i >= 1; i--) {//后缀数组 
     99         sum[i] += sum[i + 1];
    100     }
    101     while (m--) {
    102         int o, x, y, z;
    103         o = read();
    104         if (o == 1) {
    105             x = read(), y = read(), z = read();
    106             int lca = LCA(x, y);
    107             if (lca != x && lca != y) {//注意修改要讨论两种情况 
    108                 change(x, z);
    109                 change(y, z);
    110                 change(lca, -z);
    111                 change(fa[lca], -z);//lca的位置也要改,所以lca的father以上都要恢复 
    112             } else {
    113                 change(fa[lca], -z);
    114                 change(lca == x ? y : x, z);
    115             }
    116         } else if (o == 2) {
    117             x = read();
    118             printf("%lld
    ", ask(f, id[x]) - ask(f, id[x] + siz[x]) + w[x]);
    119         } else {
    120             x = read();
    121             printf("%lld
    ", query(x) + sum[id[x]] - sum[id[x] + siz[x]]);
    122         }
    123     }
    124     return 0;
    125 }
    View Code
  • 相关阅读:
    html(单纯html标签)
    python 知识点
    浅谈五大Python Web框架
    Python3的变化
    测试开发
    常见的测试用例设计方法
    数字数据类型及其对应转移字符
    char *p 与char p[]
    C语言运算符优先级 详细列表
    软件自动化测试
  • 原文地址:https://www.cnblogs.com/Sundial/p/11830611.html
Copyright © 2011-2022 走看看