zoukankan      html  css  js  c++  java
  • CodeForces Round #521 (Div.3) D. Cutting Out

    http://codeforces.com/contest/1077/problem/D

    You are given an array ss consisting of nn integers.

    You have to find any array tt of length kk such that you can cut out maximum number of copies of array tt from array ss.

    Cutting out the copy of tt means that for each element titi of array tt you have to find titi in ss and remove it from ss. If for some titi you cannot find such element in ss, then you cannot cut out one more copy of tt. The both arrays can contain duplicate elements.

    For example, if s=[1,2,3,2,4,3,1]s=[1,2,3,2,4,3,1] and k=3k=3 then one of the possible answers is t=[1,2,3]t=[1,2,3]. This array tt can be cut out 22 times.

    • To cut out the first copy of tt you can use the elements [1,2––,3,2,4,3––,1––][1,2_,3,2,4,3_,1_] (use the highlighted elements). After cutting out the first copy of tt the array ss can look like [1,3,2,4][1,3,2,4].
    • To cut out the second copy of tt you can use the elements [1––,3––,2––,4][1_,3_,2_,4]. After cutting out the second copy of tt the array ss will be [4][4].

    Your task is to find such array tt that you can cut out the copy of tt from ss maximum number of times. If there are multiple answers, you may choose any of them.

    Input

    The first line of the input contains two integers nn and kk (1kn21051≤k≤n≤2⋅105) — the number of elements in ss and the desired number of elements in tt, respectively.

    The second line of the input contains exactly nn integers s1,s2,,sns1,s2,…,sn (1si21051≤si≤2⋅105).

    Output

    Print kk integers — the elements of array tt such that you can cut out maximum possible number of copies of this array from ss. If there are multiple answers, print any of them. The required array tt can contain duplicate elements. All the elements of tt (t1,t2,,tkt1,t2,…,tk) should satisfy the following condition: 1ti21051≤ti≤2⋅105.

    Examples
    input
    Copy
    7 3
    1 2 3 2 4 3 1
    
    output
    Copy
    1 2 3 
    
    input
    Copy
    10 4
    1 3 1 3 10 3 7 7 12 3
    
    output
    Copy
    7 3 1 3
    
    input
    Copy
    15 2
    1 2 1 1 1 2 1 1 2 1 2 1 1 1 1
    
    output
    Copy
    1 1 
    
    Note

    The first example is described in the problem statement.

    In the second example the only answer is [7,3,1,3][7,3,1,3] and any its permutations. It can be shown that you cannot choose any other array such that the maximum number of copies you can cut out would be equal to 22.

    In the third example the array tt can be cut out 55 times.

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 2e5 + 10;
    int n, k;
    int a[maxn];
    int times[maxn];
    
    bool can(int x) {
        int cnt = 0;
        for(int i = 1; i < maxn; i ++)
            cnt += times[i] / x;
        if(cnt >= k) return true;
        return false;
    }
    
    int main() {
        memset(times, 0, sizeof(times));
        scanf("%d%d", &n, &k);
        for(int i = 1; i <= n; i ++) {
            scanf("%d", &a[i]);
            times[a[i]] ++;
        }
    
        int l = 1, r = n, mid, maxx = 1;
        while(l <= r) {
            mid = (r - l) / 2 + l;
            if(can(mid)) maxx = mid, l = mid + 1;
            else r = mid - 1;
        }
    
        int ans[maxn];
        int rec = 0;
        for(int i = 1; i < maxn; i ++) {
            if(times[i] >= maxx)
            for(int j = 1; j <= times[i] / maxx; j ++) {
                ans[rec ++] = i;
                if(rec == k) break;
            }
        }
    
        for(int i = 0; i < k; i ++) {
            printf("%d", ans[i]);
            printf("%s", i != k - 1 ? " " : "
    ");
        }
        return 0;
    }
    

      今天是丧气的一天

  • 相关阅读:
    计算openlayers两点之间的距离
    node.js Tools for Visual Studio 介绍
    spring.net (3)依赖注入基础
    spring.net (2)环境搭建 对(1)例子的解释和扩充
    spring.net (1) 概念-控制反转(又名依赖注入)
    如何去定义一个jquery插件
    entityframework lamda 使用where时的注意事项
    k8s big-ip control 安装使用
    lb的keepalive问题
    firefox的fq设置图文教程- 【windows,mac通用】
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/10079323.html
Copyright © 2011-2022 走看看