https://vjudge.net/contest/387998#problem/B
Little Rabbit casually writes down an equation. He wonders which radix this equation fits.
InputThe are several test cases. Each test case contains a string in a line, which represents the equation Little Rabbit writes down. The length of the string is at most $15$. The input is terminated by the end-of-file.
The equation's format: number, operator, number, $=$, number. There's no whitespace in the string.
Each number has at least $1$ digit, which may contain digital numbers $0$ to $9$ or uppercase letters $A$ to $F$ (which represent decimal $10$ to $15$). The number is guaranteed to be a non-negative integer, which means it doesn't contain the radix point or negative sign. But the number may contain leading zeros.
The operator refers to one of $+$, $-$, $*$, or $/$. It is guaranteed that the number after $/$ will not be equal to $0$. Please note that the division here is not integer division, so $7/2=3$ is not correct.OutputFor each test case, output an integer $r$ ($2 le r le 16$) in a line, which means the equation is correct in the system with radix $r$. If there are multiple answers, output the minimum one. If there is no answer between $2$ and $16$, output $-1$.Sample Input
1+1=10 18-9=9 AA*AA=70E4 7/2=3
Sample Output
2 10 16 -1
题意:
给一些算式 判断该算式成立的数的最小进制
保证都是整除,不是的话输出-1,长度为15,进制为2~16
思路:
模拟 分字符串
字符串通过+, -, *把数字分割出来,产生3段
从小到大枚举每种进制
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#include <vector>
#include <iterator>
#include <utility>
#include <sstream>
#include <limits>
#include <numeric>
#include <functional>
using namespace std;
#define gc getchar()
#define mem(a) memset(a,0,sizeof(a))
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> pii;
typedef char ch;
typedef double db;
const double PI=acos(-1.0);
const double eps=1e-6;
const int inf=0x3f3f3f3f;
const int maxn=1e5+10;
const int maxm=100+10;
const int N=1e6+10;
const int mod=1e9+7;
int Atoi(string s,int radix)
{
int ans = 0;
for(int i = 0;i<s.size();i++)
{
char t = s[i];
if(t >= '0' && t <= '9')
{
if(t - '0' >= radix)
return -1;
ans = ans * radix + 1ll * (t -'0');
}
else
{
if(1ll * (t - 'A' + 10) >= radix)
return -1;
ans = ans * radix + 1ll * (t - 'A' + 10);
}
}
return ans;
}
signed main()
{
string s;
while(cin >> s)
{
int opt = -1;
int eq = -1;
for(int i = 0; i < s.size(); i++)
{
if(s[i] >= '0' && s[i] <= '9' || s[i] >= 'A' && s[i] <= 'Z')
{
continue;
}
if(opt == -1)
{
opt = i;
}
else
{
eq = i;
}
}
string A = s.substr(0, opt);
string B = s.substr(opt + 1, eq - opt - 1);
string C = s.substr(eq + 1);
bool flag = 0;
for(int i = 2; i <= 16; i++)
{
int a = Atoi(A, i), b = Atoi(B, i), c= Atoi(C, i);
if(a == -1 || b == -1 || c == -1)
{
continue;
}
bool S = 0;
if(opt == '+')
{
S = a + b == c;
}
else if(s[opt] == '-')
{
S = a - b == c;
}
else if(s[opt] == '*')
{
S = a * b == c;
}
else
{
if(b == 0) return -1;
S = a % b == 0 && a == b * c;
}
if(S)
{
cout << i << endl;
flag = 1;
break;
}
}
if(!flag)
{
cout << -1 << endl;
}
}
}