zoukankan      html  css  js  c++  java
  • HDU

    题意:给你一个有向图,满足去掉方向是完全图,将其拆成PQ两个图(没有公共边),问你两图是否分别满足对于任意3个点a,b,c 若有一条边从a到b且有一条边从b到c ,则同样有一条边从a到c。 

    题解:观察,发现题目等价于对PQ分别bfs。如果某点的深度大于等于2就判错。用vis储存深度,注意对vis数组的操作:每推入一个起点时,vis[起点]=1,(pop时不--,最后统一memset0)每推入一个未访问的相邻点v时vis[v]=vis[now]+1;

    坑:1.cin>>n写错地方,结果写了两个cin>>n,结果把图的第一个符吞了。2.q.clear没有这个函数,用赋值 q1 = queue<int>();3.用邻接链表建图遍历边时循环从0开始

    ac代码:

    #define _CRT_SECURE_NO_WARNINGS
    #include<iostream>
    #include<stdio.h>
    #include<vector>
    #include<algorithm>
    #include<vector>
    #include<queue>
    #include<string.h>
    using namespace std;
    const int maxn = 2020;
    vector<int> EP[maxn],EQ[maxn];
    char map[maxn][maxn];
    int vis[maxn];
    int main() {
        int t;
        cin >> t;
        while (t--) {
            int n;
            cin >> n;
            for (int i = 1; i <= n; i++) {
                EP[i].clear();
                EQ[i].clear();
        }
            
            for (int i = 1; i <= n; i++) {
                scanf("%s", map[i]+1);
                //cout << map[i] << endl;
                
                for (int j =1; j < n; j++) {
                    if (map[i][j] == 'P')EP[i].push_back(j);
                    if (map[i][j] == 'Q') EQ[i].push_back(j);
                }        
            }
            //for (int i = 1; i <= n; i++)cout << map[i]<<endl;
            //bfs();
            int flag = 1;
            queue<int> Q;
            for (int i = 1; i <= n; i++) {
                if (EP[i].empty()) continue;
                memset(vis, 0, sizeof(vis));
                
                Q.push(i); vis[i] = 1;
                while (!Q.empty()) {
                    int now = Q.front();
                    Q.pop(); //vis[now]--;
                    for (int j = 0; j < EP[now].size(); j++) {
                        int v = EP[now][j];
                        if (!vis[v]) {
                            vis[v]=vis[now]+1;
                            Q.push(v);
                        }
                        if (vis[v] == 3) {
                            flag = 0;
                            break;    
                        }
                        
    
                    }
                }
                if (flag == 0)break;
            }
            if (!flag) {
                puts("N");
                continue;
            }
            //repeat;
             flag = 1;
             while (!Q.empty()) Q.pop();
            for (int i = 1; i <= n; i++) {
                if (EQ[i].empty()) continue;
                memset(vis, 0, sizeof(vis));
    
                Q.push(i); vis[i] = 1;
                while (!Q.empty()) {
                    int now = Q.front();
                    Q.pop(); //vis[now]--;
                    for (int j = 0; j < EQ[now].size(); j++) {
                        int v = EQ[now][j];
                        if (!vis[v]) {
                            vis[v] = vis[now] + 1;
                            Q.push(v);
                        }
                        if (vis[v] == 3) {
                            flag = 0;
                            break;
                        }
    
    
                    }
                }
                if (flag == 0)break;
            }
            if (!flag) puts("N");    
            else puts("T");
    
        }
    }
    成功的路并不拥挤,因为大部分人都在颓(笑)
  • 相关阅读:
    RCNN,Fast RCNN,Faster RCNN 的前生今世:(4) SSD
    RCNN,Fast RCNN,Faster RCNN 的前生今世:(0) DMP
    nachos3.4 threads管理 (c++)
    逻辑回归与多分类逻辑回归
    [LeetCode]String to Integer (atoi)
    [LeetCode]Reverse Integer
    [LeetCode]ZigZag Conversion
    [LeetCode]Longest Palindromic Substring
    [LeetCode]Median of Two Sorted Arrays
    平面点的旋转公式
  • 原文地址:https://www.cnblogs.com/SuuT/p/8574357.html
Copyright © 2011-2022 走看看