前言
在本系列的上一篇博文里,我已经介绍了进程/线程的基本含义以及一些相关数据结构,现在我们来看看Linux中进程的管理。
进程链表
Linux内核定义了一个list_head结构,数据结构定义
struct list_head {
struct list_head *next;
struct list_head *prev;
};
字段next 和 prev 分别表示通用双向链表向前和向后的指针元素!list_head字段的指针中存放的是另一个list_head字段的元素,而不是本身的数据结构地址。如图
在我们上一篇博客介绍到的进程描述符(task_struct)也有这个结构体,称为进程链表。进程链表是一个双向循环链表,它把所有进程的描述符链接起来。每个task_struct结构都包含一个list_head类型的字段tasks,这个结构的prev和next分别指向前面和后面的task_struct元素。
这个链表是一个循环的双向链表,开始的时候只有init_task这一个进程,它是内核的第一个进程,它的初始化是通过静态分配内存,"手动"(其它的进程初始化都是通过动态分配内存初始化的)进行的,每新建一个进程,就通过SET_LINKS宏将该进程的task_struct结构加入到这条双向链表中,不过要注意的是如果一个进程新建一个线程(不包括主线程),也就是轻量级进程,它是不会加入该链表的。通过宏for_each_process可以从init_task开始遍历所有的进程。
#define for_each_task(p)
for (p = &init_task ; (p = p->next_task) != &init_task ; )
可运行队列(runqueue)
当内核寻找一个新进程在CPU上运行时,必须只考虑可运行进程(即处在TASK_RUNNING状态的进程)。把可运行状态的进程组成一个双向循环链表,也叫可运行队列(runqueue)。
在task_struct结构中定义了两个指针。
struct task_struct *next_run, *prev_run;
由正在运行或是可以运行的,其进程状态均为TASK_RUNNING的进程所组成的一个双向循环链表,即run_queue就绪队列。该链表的前后向指针用next_run和prev_run,链表的头和尾都是init_task(即0号
进程)。
但是,为了实现在固定的时间内选出“最佳”的可运行程序,内核将可运行进程的优先级划分为0-139,并为此建立了140个可运行进程链表,用以组织处于TASK_RUNNING状态的进程,每个进程优先权对应一个不同的链表
linux内核定义了一个prio_array_t类型的结构体来管理这140个链表。每个可运行的进程都在这140个链表中的一个,通过进程描述符结构中的run_list来实现,它也是一个list_head类型。enqueue_task是把进程描述符插入到某个可运行链表中,dequeue_task则从某个可运行链表中删除该进程描述符。TASK_RUNNING状态的prio_array_t类型的结构体是runqueue结构的arrays[1]成员。
pidhash链表
为了通过pid找到进程的描述符,如果直接遍历进程间互联的链表来查找进程id为pid的进程描述符显然是低效的,所以为了更为高效的查找,linux内核使用了4个hash散列表来加快查找,之所以使用4个散列表,是为了能根据不同的pid类型来查找进程描述符,它们分别是进程的pid,线程组领头进程的pid,进程组领头进程的pid,会话领头进程的pid。每个类型的散列表中是通过宏pid_hashfn(x)来进行散列值的计算的。每个进程都可能同时处于这是个散列表中,所以在进程描述符中有一个类型为pid结构的pids成员,通过它可以将进程加入散列表中,pid结构中包含解决散列冲突的pid_chain成员,它是hlist_node类型的,还有一个是将相同pid链起来的pid_list,它是list_head类型。
struct pid_link {
int nr; // pid的数值
struct hlist_node pid_chain;
struct list_head pid_list;
}
struct task_struct {
…
struct pid_link pids[4];
…
}
Linux 进程安全上下文 struct cred
内核2.6,定义一个新的 struct task_security_struct,然后挂接到task_struct的void *security指针上,但是,内核3.x 在task_struct找不到security成员了,原来是将安全相关的信息剥离到一个叫做 cred 的结构体中,由cred负责保存进程安全上下文
The security context of a task
95 *
96 * The parts of the context break down into two categories:
97 *
98 * (1) The objective context of a task. These parts are used when some other
99 * task is attempting to affect this one.
100 *
101 * (2) The subjective context. These details are used when the task is acting
102 * upon another object, be that a file, a task, a key or whatever.
103 *
104 * Note that some members of this structure belong to both categories - the
105 * LSM security pointer for instance.
106 *
107 * A task has two security pointers. task->real_cred points to the objective
108 * context that defines that task's actual details. The objective part of this
109 * context is used whenever that task is acted upon.
110 *
111 * task->cred points to the subjective context that defines the details of how
112 * that task is going to act upon another object. This may be overridden
113 * temporarily to point to another security context, but normally points to the
114 * same context as task->real_cred.
115 */
116 struct cred {
117 atomic_t usage;
118 #ifdef CONFIG_DEBUG_CREDENTIALS
119 atomic_t subscribers; /* number of processes subscribed */
120 void *put_addr;
121 unsigned magic;
122 #define CRED_MAGIC 0x43736564
123 #define CRED_MAGIC_DEAD 0x44656144
124 #endif
125 uid_t uid; /* real UID of the task */
126 gid_t gid; /* real GID of the task */
127 uid_t suid; /* saved UID of the task */
128 gid_t sgid; /* saved GID of the task */
129 uid_t euid; /* effective UID of the task */
130 gid_t egid; /* effective GID of the task */
131 uid_t fsuid; /* UID for VFS ops */
132 gid_t fsgid; /* GID for VFS ops */
133 unsigned securebits; /* SUID-less security management */
134 kernel_cap_t cap_inheritable; /* caps our children can inherit */
135 kernel_cap_t cap_permitted; /* caps we're permitted */
136 kernel_cap_t cap_effective; /* caps we can actually use */
137 kernel_cap_t cap_bset; /* capability bounding set */
138 #ifdef CONFIG_KEYS
139 unsigned char jit_keyring; /* default keyring to attach requested
140 * keys to */
141 struct key *thread_keyring; /* keyring private to this thread */
142 struct key *request_key_auth; /* assumed request_key authority */
143 struct thread_group_cred *tgcred; /* thread-group shared credentials */
144 #endif
145 #ifdef CONFIG_SECURITY
146 void *security; /* subjective LSM security */
147 #endif
148 struct user_struct *user; /* real user ID subscription */
149 struct user_namespace *user_ns; /* cached user->user_ns */
150 struct group_info *group_info; /* supplementary groups for euid/fsgid */
151 struct rcu_head rcu; /* RCU deletion hook */
152 };
正如uid,euid的关系一样,task_struct也有两种身份cred
struct task_struct{
...
/* process credentials */
const struct cred __rcu *real_cred; /* objective and real subjective task credentials (COW) */
const struct cred __rcu *cred; /* effective (overridable) subjective task credentials (COW) */
...
}
这里详细说明以下这个安全上下文的作用。
linux系统中,一个对象操作另一个对象时通常要做安全性检查。如一个进程操作一个文件,要检查进程是否有权限操作该文件。
linux内核中,credential机制的引入,正是对象间访问所需权限的抽象;主体提供自己权限的证书,客体提供访问自己所需权限的证书,根据主客体提供的证书及操作做安全性检查。
证书管理术语:
客体:指用户空间程序直接可以操作的系统对象,如进程、文件、消息队列、信号量、共享内存等;每个客体都有一组凭证,每种客体有不同的凭证集
客体所有者:客体凭证集有一部分表示客体所有者;如文件中uid表示文件的所有者
主体:操作客体的对象;除进程外大多数系统对象都不是主体,但在特殊环境下某些对象是主体,如文件在设置F_SETOWN后可以发送SIGIO信号到进程,这时文件就是主体,进程就是客体
行为:主体怎样操作客体,如读写执行文件等
客体上下文:客体被访问时所需权限凭证集
主体上下文:主体的权限凭证集
规则:主体操作客体时,用于安全检查
当主体操作客体时,根据主体上下文、客体上下文、操作来做安全计算,查找规则看主体是否有权限操作客体。
进程描述符中cred和real_cred字段分别指向主体与客体的证书
- usage:表于证书引用管理
- uid:实际用户id(real UID of the task,进程真正的uid,即为创建该进程的用户的uid)
- gid:实际用户组id
- suid:保存的用户uid(saved UID of the task,保留的UID,例如,当一个特权进程需要临时降低其权限时,将其euid更改为非特权的UID,然后将原来的EUID保存到SUID,当需要恢复权限时,将EUID改为SUID中保存的UID即可)
- sgid;保存的用户组gid
- euid:真正有效的用户id(effective UID of the task,有效的UID,用于进程访问资源时的访问检查,大多数情况下,EUID是同于UID的,但是也可以不同,或者说动态获取的ID)
- egid:真正有效的用户组id
- securebits:安全管理标识;用来控制凭证的操作与继承
- cap_inheritable:execve时可以继承的权限
- cap_permitted:可以(通过capset)赋予cap_effective的权限
- cap_effective:进程实际使用的权限
- cap_bset:主要用于uid=0或euid=0时,execve可以继承的权限,cap_permitted=cap_inheritable+cap_bset,cap_effective=cap_permitted。可以将cap_bset中的权限通过调用capset赋给cap_inheritable
- user:主要表示用户信息,如用户进程数、打开文件数等
- rcu:RCU删除用
struct cred在kernel pwn的利用
注:笔者还没有学习内核pwn的相关知识,所以这里只是简单介绍一下cred这个结构体在内核pwn中提权的作用,没有具体例子说明
可以通过执行commit_creds(prepare_kernel_cred(0))来获得root权限(root的uid、gid均为0)
源码如下:
/* /kernel/cred.c */
/**
* prepare_kernel_cred - Prepare a set of credentials for a kernel service
* @daemon: A userspace daemon to be used as a reference
*
* Prepare a set of credentials for a kernel service. This can then be used to
* override a task's own credentials so that work can be done on behalf of that
* task that requires a different subjective context.
*
* @daemon is used to provide a base for the security record, but can be NULL.
* If @daemon is supplied, then the security data will be derived from that;
* otherwise they'll be set to 0 and no groups, full capabilities and no keys.
*
* The caller may change these controls afterwards if desired.
*
* Returns the new credentials or NULL if out of memory.
*
* Does not take, and does not return holding current->cred_replace_mutex.
*/
struct cred *prepare_kernel_cred(struct task_struct *daemon)
{
const struct cred *old;
struct cred *new;
new = kmem_cache_alloc(cred_jar, GFP_KERNEL);
if (!new)
return NULL;
kdebug("prepare_kernel_cred() alloc %p", new);
if (daemon)
old = get_task_cred(daemon);
else
old = get_cred(&init_cred);
validate_creds(old);
*new = *old;
new->non_rcu = 0;
atomic_set(&new->usage, 1);
set_cred_subscribers(new, 0);
get_uid(new->user);
get_user_ns(new->user_ns);
get_group_info(new->group_info);
#ifdef CONFIG_KEYS
new->session_keyring = NULL;
new->process_keyring = NULL;
new->thread_keyring = NULL;
new->request_key_auth = NULL;
new->jit_keyring = KEY_REQKEY_DEFL_THREAD_KEYRING;
#endif
#ifdef CONFIG_SECURITY
new->security = NULL;
#endif
if (security_prepare_creds(new, old, GFP_KERNEL) < 0)
goto error;
put_cred(old);
validate_creds(new);
return new;
error:
put_cred(new);
put_cred(old);
return NULL;
}
EXPORT_SYMBOL(prepare_kernel_cred);
prepare_kernel_cred()
根据源码注释中的描述,这个函数返回一个cred结构体,可以用于代替进程原来的cred以便能够完成需要不同subjective context的任务。如果提供了参数@daemon,那么security data将来源于此,而这个参数也可为空,然后内容字段会被设置成0(uid/gid都是0,就是root权限咯?)
/* /kernel/cred.c */
/**
* commit_creds - Install new credentials upon the current task
* @new: The credentials to be assigned
*
* Install a new set of credentials to the current task, using RCU to replace
* the old set. Both the objective and the subjective credentials pointers are
* updated. This function may not be called if the subjective credentials are
* in an overridden state.
*
* This function eats the caller's reference to the new credentials.
*
* Always returns 0 thus allowing this function to be tail-called at the end
* of, say, sys_setgid().
*/
int commit_creds(struct cred *new)
{
struct task_struct *task = current;
const struct cred *old = task->real_cred;
kdebug("commit_creds(%p{%d,%d})", new,
atomic_read(&new->usage),
read_cred_subscribers(new));
BUG_ON(task->cred != old);
#ifdef CONFIG_DEBUG_CREDENTIALS
BUG_ON(read_cred_subscribers(old) < 2);
validate_creds(old);
validate_creds(new);
#endif
BUG_ON(atomic_read(&new->usage) < 1);
get_cred(new); /* we will require a ref for the subj creds too */
/* dumpability changes */
if (!uid_eq(old->euid, new->euid) ||
!gid_eq(old->egid, new->egid) ||
!uid_eq(old->fsuid, new->fsuid) ||
!gid_eq(old->fsgid, new->fsgid) ||
!cred_cap_issubset(old, new)) {
if (task->mm)
set_dumpable(task->mm, suid_dumpable);
task->pdeath_signal = 0;
/*
* If a task drops privileges and becomes nondumpable,
* the dumpability change must become visible before
* the credential change; otherwise, a __ptrace_may_access()
* racing with this change may be able to attach to a task it
* shouldn't be able to attach to (as if the task had dropped
* privileges without becoming nondumpable).
* Pairs with a read barrier in __ptrace_may_access().
*/
smp_wmb();
}
/* alter the thread keyring */
if (!uid_eq(new->fsuid, old->fsuid))
key_fsuid_changed(task);
if (!gid_eq(new->fsgid, old->fsgid))
key_fsgid_changed(task);
/* do it
* RLIMIT_NPROC limits on user->processes have already been checked
* in set_user().
*/
alter_cred_subscribers(new, 2);
if (new->user != old->user)
atomic_inc(&new->user->processes);
rcu_assign_pointer(task->real_cred, new);
rcu_assign_pointer(task->cred, new);
if (new->user != old->user)
atomic_dec(&old->user->processes);
alter_cred_subscribers(old, -2);
/* send notifications */
if (!uid_eq(new->uid, old->uid) ||
!uid_eq(new->euid, old->euid) ||
!uid_eq(new->suid, old->suid) ||
!uid_eq(new->fsuid, old->fsuid))
proc_id_connector(task, PROC_EVENT_UID);
if (!gid_eq(new->gid, old->gid) ||
!gid_eq(new->egid, old->egid) ||
!gid_eq(new->sgid, old->sgid) ||
!gid_eq(new->fsgid, old->fsgid))
proc_id_connector(task, PROC_EVENT_GID);
/* release the old obj and subj refs both */
put_cred(old);
put_cred(old);
return 0;
}
EXPORT_SYMBOL(commit_creds);
根据源码注释的描述,这个函数会将当前进程的real_cred和cred都设置成一组新的cred。
综上,通过prepare_kernel_cred(0)获得一个root的cred,然后再用commit_creds()将其安装到当前进程,即commit_creds(prepare_kernel_cred(0)),这样就可以提权啦!