zoukankan      html  css  js  c++  java
  • Tree Traversals Again

    An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

    Output Specification:

    For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

    Sample Input:

    6
    Push 1
    Push 2
    Push 3
    Pop
    Pop
    Push 4
    Pop
    Pop
    Push 5
    Push 6
    Pop
    Pop

    Sample Output:

    3 4 2 6 5 1

    我的代码:C++(g++ 6.5.0)

    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<stdbool.h>
    #define MaxSize 30
    
    typedef struct Stack *PtrToStack;
    struct Stack {
    	int top;
    	char stack[MaxSize];
    };
    
    char preOrder[MaxSize + 1]; //位置0不存节点
    char inOrder[MaxSize + 1]; 
    char postOrder[MaxSize + 1]; 
    
    void BuildTree(PtrToStack S, char preOrder[], char inOrder[], char postOrder[], int N) {
    	char oprtn[5];
    	int i;
    	int j = 1;
    	int k = 1;
    	int node;
    	for (i = 1; i <= 2*N; i++) {
    		scanf("%s", oprtn);
    		if (strcmp(oprtn, "push") == 0) { //push
    			scanf("%d", &node);
    			preOrder[j++] = node;
    			S->stack[S->top++] = node;
    
    		}else { //pop
    			char temp = S->stack[--S->top];
    			inOrder[k++] = temp;
    		}
    	}
    }
    
    void Solve(char preOrder[], char inOrder[], char postOrder[], int Num, int preL, int inL, int postL) {
    	/*Num遍历时的节点总数 不是总的节点数, first先序遍历起始点, left与right是后序数组的区间*/
    	int i,index,lNum,rNum;
    	if (Num == 0) return;
    	if (Num==1) { 
    		postOrder[postL] = preOrder[preL];
    		return;
    	}
    	postOrder[postL+Num-1] = preOrder[preL]; //先序遍历第一个节点为根节点,放在后序遍历区间最后一个位置
    	for (i = 0; i <= MaxSize; i++) { //找到根节点在中序遍历中的位置
    		if (inOrder[i] == preOrder[preL]) {
    			index = i;
    			break;
    		}
    	}
    	lNum = index - inL;  //左子树节点个数
    	rNum = inL + Num - index - 1;   //inL用于计算左右子树的节点数的
    	Solve(preOrder, inOrder, postOrder, lNum, preL+1, inL, postL);
    	Solve(preOrder, inOrder, postOrder, rNum, preL+lNum+1, index+1, postL + lNum);
    }
    
    int main()
    {
    	int N;
    	bool first = true; //输出是否为第一个元素的标记
    	PtrToStack S = (PtrToStack)malloc(sizeof(struct Stack));  //记得free
    	S->top = 0;
    	scanf("%d", &N);
    	BuildTree(S, preOrder, inOrder, postOrder,N);
    	Solve(preOrder, inOrder, postOrder, N, 1, 1, 1);
    	for (int i = 1; i <= N;i++) {
    		if (first) {
    			printf("%d", postOrder[i]);
    			first = false;
    		}else {
    			printf(" %d", postOrder[i]);
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    解决ORA-00257: 归档程序错误。在释放之前仅限于内部连接
    linux 监控脚本运行时间
    sqlserver中查询表字段的sql语句
    gpg无法生成密钥对的问题
    jdbc连接oracle的几种格式
    windows中使用tracert命令追踪路由信息
    MySQL编码问题探究
    Apache Storm Installation
    linux的swap相关
    awk
  • 原文地址:https://www.cnblogs.com/TangYJHappen/p/13624272.html
Copyright © 2011-2022 走看看