zoukankan      html  css  js  c++  java
  • 网络流相关(拓扑)CodeForces 269C:Flawed Flow

    Emuskald considers himself a master of flow algorithms. Now he has completed his most ingenious program yet — it calculates the maximum flow in an undirected graph. The graph consists of n vertices and m edges. Vertices are numbered from 1 to n. Vertices 1 and n being the source and the sink respectively.

    However, his max-flow algorithm seems to have a little flaw — it only finds the flow volume for each edge, but not its direction. Help him find for each edge the direction of the flow through this edges. Note, that the resulting flow should be correct maximum flow.

    More formally. You are given an undirected graph. For each it's undirected edge (ai, bi) you are given the flow volume ci. You should direct all edges in such way that the following conditions hold:

    1. for each vertex v (1 < v < n), sum of ci of incoming edges is equal to the sum of ci of outcoming edges;
    2. vertex with number 1 has no incoming edges;
    3. the obtained directed graph does not have cycles.
     

    Input

    The first line of input contains two space-separated integers n and m (2 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105), the number of vertices and edges in the graph. The following m lines contain three space-separated integers ai, bi and ci (1 ≤ ai, bi ≤ n, ai ≠ bi, 1 ≤ ci ≤ 104), which means that there is an undirected edge from ai to bi with flow volume ci.

    It is guaranteed that there are no two edges connecting the same vertices; the given graph is connected; a solution always exists.

     

    Output

    Output m lines, each containing one integer di, which should be 0 if the direction of the i-th edge is ai → bi (the flow goes from vertex ai to vertex bi) and should be 1 otherwise. The edges are numbered from 1 to m in the order they are given in the input.

    If there are several solutions you can print any of them.

     

    Sample Input

    Input
    3 3
    3 2 10
    1 2 10
    3 1 5
    Output
    1
    0
    1
    Input
    4 5
    1 2 10
    1 3 10
    2 3 5
    4 2 15
    3 4 5
    Output
    0
    0
    1
    1
    0
      可以发现这里有拓扑性质,可以直接做,O(N)复杂度。
     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 #include <queue>
     5 using namespace std;
     6 const int N=200010,M=400010;
     7 int cnt=1,fir[N],nxt[M],to[M],cap[M];
     8 int n,m,in[N],vis[N],ans[N];queue<int>q;
     9 void addedge(int a,int b,int c){
    10     nxt[++cnt]=fir[a];
    11     to[fir[a]=cnt]=b;
    12     cap[cnt]=c;
    13 }
    14 int main(){
    15     scanf("%d%d",&n,&m);
    16     for(int i=1,a,b,c;i<=m;i++){
    17         scanf("%d%d%d",&a,&b,&c);
    18         addedge(a,b,c);addedge(b,a,c);
    19         in[a]+=c;in[b]+=c;
    20     }
    21     for(int i=2;i<n;i++)in[i]/=2;
    22     q.push(1);in[1]=0;vis[1]=1;
    23     while(!q.empty()){
    24         int x=q.front();q.pop();
    25         for(int i=fir[x];i;i=nxt[i])
    26             if(!vis[to[i]]){
    27                 in[to[i]]-=cap[i];
    28                 ans[i/2]=i%2;
    29                 if(in[to[i]]==0){
    30                     q.push(to[i]);
    31                     vis[to[i]]=1;
    32                 }
    33             }
    34     }
    35     for(int i=1;i<=m;i++)
    36         printf("%d
    ",ans[i]);
    37     return 0;    
    38 }
  • 相关阅读:
    MySQL-3(练习题)-三套知识点看完SQL没问题
    MySQL知识点-2(超详细)
    MySQL知识点-1(超详细)
    MySQL表结构笔记9
    MySQL增删改查&数据类型笔记8
    07:表联结MySQL笔记7
    spring事务传播机制
    MySQL查看两个查询的差集
    python连接数据库
    chrome一款可以在浏览器编辑hosts文件的插件HostAdmin App
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5928230.html
Copyright © 2011-2022 走看看