zoukankan      html  css  js  c++  java
  • 搜索(DLX重复覆盖模板):HDU 2295 Radar

     

    Radar

     

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3684    Accepted Submission(s): 1398


    Problem Description
    N cities of the Java Kingdom need to be covered by radars for being in a state of war. Since the kingdom has M radar stations but only K operators, we can at most operate K radars. All radars have the same circular coverage with a radius of R. Our goal is to minimize R while covering the entire city with no more than K radars.
     
    Input
    The input consists of several test cases. The first line of the input consists of an integer T, indicating the number of test cases. The first line of each test case consists of 3 integers: N, M, K, representing the number of cities, the number of radar stations and the number of operators. Each of the following N lines consists of the coordinate of a city.
    Each of the last M lines consists of the coordinate of a radar station.

    All coordinates are separated by one space.
    Technical Specification

    1. 1 ≤ T ≤ 20
    2. 1 ≤ N, M ≤ 50
    3. 1 ≤ K ≤ M
    4. 0 ≤ X, Y ≤ 1000
     
    Output
    For each test case, output the radius on a single line, rounded to six fractional digits.
     
    Sample Input
    1 3 3 2 3 4 3 1 5 4 1 1 2 2 3 3
     
    Sample Output
    2.236068
      水题,主要是为了贴模板。
      1 #include <iostream>
      2 #include <cstring>
      3 #include <cstdio>
      4 #include <cmath>
      5 using namespace std;
      6 const double eps=1e-8;
      7 const int N=55,M=3005;
      8 struct Point{int x,y;}c[N],r[N];
      9 double sqr(double x){return 1.0*x*x;}
     10 double dis(Point a,Point b){return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));}
     11 
     12 void P(int x){
     13   printf("%d
    ",x);
     14 }
     15 
     16 int T,n,m,k,col[M],row[M];
     17 int U[M],D[M],L[M],R[M];
     18 int H[N],C[N],vis[N],cnt;
     19 struct DLX{
     20   void Init(int n,int m){
     21     for(int i=0;i<=m;i++){
     22       L[i]=i-1;R[i]=i+1;
     23       C[i]=0;U[i]=D[i]=i;
     24     }L[0]=m;R[m]=0;cnt=m;
     25     for(int i=1;i<=n;i++)H[i]=0;
     26   }
     27   void Link(int r,int c){
     28     C[c]+=1;++cnt;
     29     U[D[c]]=cnt;U[cnt]=c;
     30     D[cnt]=D[c];D[c]=cnt;
     31     row[cnt]=r;col[cnt]=c;
     32     
     33     if(H[r]){
     34       L[R[H[r]]]=cnt;L[cnt]=H[r];
     35       R[cnt]=R[H[r]];R[H[r]]=cnt;
     36     }
     37     else H[r]=L[cnt]=R[cnt]=cnt;
     38   }
     39   void Delete(int x){
     40     for(int i=D[x];i!=x;i=D[i])
     41       L[R[i]]=L[i],R[L[i]]=R[i];
     42   }
     43   void Resume(int x){
     44     for(int i=U[x];i!=x;i=U[i])
     45       L[R[i]]=i,R[L[i]]=i;
     46   }
     47   int F(){
     48     int ret=0;
     49     for(int c=R[0];c;c=R[c])vis[c]=0;
     50     for(int c=R[0];c;c=R[c]){
     51       if(vis[c])continue;ret+=1;
     52       for(int i=D[c];i!=c;i=D[i])
     53     for(int j=R[i];j!=i;j=R[j])
     54       vis[col[j]]=1;vis[c]=1;
     55     }
     56     return ret;
     57   }
     58   bool Dance(int dep){
     59     if(!R[0])return dep<=k;
     60     if(dep+F()>k)return false;
     61     int p=0;
     62     for(int i=R[0];i;i=R[i])
     63       if(!p||C[i]<C[p])p=i;
     64     for(int i=D[p];i!=p;i=D[i]){
     65       Delete(i);
     66       for(int j=R[i];j!=i;j=R[j])Delete(j);
     67       if(Dance(dep+1))return true;
     68       for(int j=L[i];j!=i;j=L[j])Resume(j);
     69       Resume(i);
     70     }
     71     return false;
     72   }
     73 
     74   bool Check(double d){
     75     Init(m,n);
     76     for(int i=1;i<=m;i++)
     77       for(int j=1;j<=n;j++)
     78     if(d>=dis(r[i],c[j]))
     79       Link(i,j);
     80     return Dance(0);
     81   }
     82 }dlx;
     83 
     84 int main(){
     85   scanf("%d",&T);
     86   while(T--){
     87     scanf("%d%d%d",&n,&m,&k);
     88     for(int i=1;i<=n;i++)
     89       scanf("%d%d",&c[i].x,&c[i].y);
     90     for(int i=1;i<=m;i++)
     91       scanf("%d%d",&r[i].x,&r[i].y);
     92     double l=0,r=1e3;
     93     while(r-l>=eps){
     94       double mid=(l+r)/2;
     95       if(dlx.Check(mid))r=mid;
     96       else l=mid;
     97     }
     98     printf("%.6f
    ",l);
     99   }
    100   return 0;
    101 }
  • 相关阅读:
    写在前面
    你应该知道的 RPC 原理
    虚函数 继承 多态
    指针 函数指针 指针数组
    Python使用RMF聚类分析客户价值
    数据挖掘关联分析中的支持度、置信度和提升度
    OpenCV2.4.4+Cmake2.8+Vs2010编译createsamples+traincascade程序用来训练样本
    UNITY + OpenCVSharp调节图像对比度
    使用单精度类型变量
    有符号基本整型
  • 原文地址:https://www.cnblogs.com/TenderRun/p/6062956.html
Copyright © 2011-2022 走看看