Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / gr eat / / g r e at / a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat / rg eat / / r g e at / a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae / rg tae / / r g ta e / t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1. 本文地址
递归解法:s2[0...j]是否可以由s1[0...i]转换 isScramble(s2[0...j], s1[0...i]),可以分解成 i 个子问题(i 其实等于j,因为两个字符串长度不一样,肯定不能互相转换):
( isScramble(s2[0...k], s1[0...k]) && isScramble(s2[k+1...j], s1[k+1...i]) ) || ( isScramble(s2[0...k], s1[i-k...i]) && isScramble(s2[k+1...j], s1[0...i-k-1]) ),(k = 0,1,2 ... i-1,k相当于字符串的分割点)
只要一个子问题返回ture,那么就表示两个字符串可以转换。代码如下:
1 class Solution { 2 public: 3 bool isScramble(string s1, string s2) { 4 return isScrambleRecur(s1,s2); 5 } 6 bool isScrambleRecur(string &s1, string &s2) 7 { 8 string s1cop = s1, s2cop = s2; 9 sort(s1cop.begin(), s1cop.end()); 10 sort(s2cop.begin(), s2cop.end()); 11 if(s1cop != s2cop)return false;//两个字符串所含字母不同 12 if(s1 == s2)return true; 13 14 int len = s1.size(); 15 for(int i = 1; i < len; i++)//分割位置 16 { 17 string s1left = s1.substr(0, i); 18 string s1right = s1.substr(i); 19 string s2left = s2.substr(0, i); 20 string s2right = s2.substr(i); 21 if(isScrambleRecur(s1left, s2left) && isScrambleRecur(s1right, s2right)) 22 return true; 23 s2left = s2.substr(0, len-i); 24 s2right = s2.substr(len-i); 25 if(isScrambleRecur(s1left, s2right) && isScrambleRecur(s1right, s2left)) 26 return true; 27 } 28 return false; 29 } 30 };
动态规划解法:
递归解法有很多重复子问题,比如s2 = rgeat, s1 = great 当我们选择分割点为0时,要解决子问题 isScramble(reat, geat),再对该子问题选择分割点0时,要解决子问题 isScramble(eat,eat);而当我们第一步选择1作为分割点时,也要解决子问题 isScramble(eat,eat)。相同的子问题isScramble(eat,eat)就要解决2次。
动态规划用数组来保存子问题,设dp[k][i][j]表示s2从j开始长度为k的子串是否可以由s1从i开始长度为k的子串转换而成,那么动态规划方程如下
- 初始条件:dp[1][i][j] = (s1[i] == s2[j] ? true : false)
- dp[k][i][j] = ( dp[divlen][i][j] && dp[k-divlen][i+divlen][j+divlen] ) || ( dp[divlen][i][j+k-divlen] && dp[k-divlen][i+divlen][j] ) (divlen = 1,2,3...k-1, 它表示子串分割点到子串起始端的距离) ,只要一个子问题返回真,就可以停止计算
代码如下:
1 class Solution { 2 public: 3 bool isScramble(string s1, string s2) { 4 //动态规划解法 5 if(s1.size() != s2.size())return false; 6 const int len = s1.size(); 7 //dp[k][i][j]表示s2从j开始长度为k的子串是否可以由s1从i开始长度为k的子串转换而成 8 bool dp[len+1][len][len]; 9 //初始化长度为1的子串的dp值 10 for(int i = 0; i <= len-1; i++) 11 for(int j = 0; j <= len-1; j++) 12 dp[1][i][j] = s1[i] == s2[j] ? true : false; 13 for(int k = 2; k <= len; k++)//子串的长度 14 for(int i = 0; i <= len-k; i++)//s1的起始位置 15 for(int j = 0; j <= len-k; j++)//s2的起始位置 16 { 17 dp[k][i][j] = false; 18 //divlen表示两个子串分割点到子串起始端的距离 19 for(int divlen = 1; divlen < k && !dp[k][i][j]; divlen++) 20 dp[k][i][j] = (dp[divlen][i][j] && dp[k-divlen][i+divlen][j+divlen]) 21 || (dp[divlen][i][j+k-divlen] && dp[k-divlen][i+divlen][j]); 22 } 23 return dp[len][0][0]; 24 } 25 };
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3452004.html