zoukankan      html  css  js  c++  java
  • @loj


    @description@

    企鹅国中有 N 座城市,编号从 1 到 N 。

    对于任意的两座城市 i 和 j ,企鹅们可以花费 (i xor j) * C 的时间从城市 i 走到城市 j ,这里 C 为一个给定的常数。

    当然除此之外还有 M 条单向的快捷通道,第 i 条快捷通道从第 Fi 个城市通向第 Ti 个城市,走这条通道需要消耗 Vi 的时间。

    现在来自 Penguin Kingdom University 的企鹅豆豆正在考虑从城市 A 前往城市 B 最少需要多少时间?

    input
    输入第一行包含三个整数 N, M, C (1 ≤ N ≤ 10^5, 1 ≤ M ≤ 3*10^5, 1 ≤ C ≤ 100),表示企鹅国城市的个数、快捷通道的个数以及题面中提到的给定的常数 C。

    接下来的 M 行,每行三个正整数 Fi, Ti, Vi (1 ≤ Fi ≤ N, 1 ≤ Ti ≤N, 1 ≤ Vi ≤ 100),分别表示对应通道的起点城市标号、终点城市标号和通过这条通道需要消耗的时间。

    最后一行两个正整数 A, B,表示企鹅豆豆选择的起点城市标号和终点城市标号。

    output
    输出一行一个整数,表示从城市 A 前往城市 B 需要的最少时间。

    simple input
    7 2 10
    1 3 1
    2 4 4
    3 6
    simple output
    34
    simple explain
    先从 3 走到 2 ,再从 2 通过通道到达 4 ,再从 4 走到 6。

    @solution@

    令人自闭(事实上是因为自己太弱的)的一道题 TAT。

    我们有两类边:一般边 与 异或边。
    一种特别暴力的想法就是,按题意给所有点之间连上这两类边,跑从 A 出发到 B 的最短路。但是由于异或边构成的是完全图,导致这种想法并不可行。

    然而我们注意到一般边的数量是在正常范围以内。而且我们可不可以利用异或的什么性质来简化图,减少异或边的数量?

    这个时候就可以用位运算最基本的套路:拆位。即把二进制表示下的每一位分类讨论。
    对于 i 到 j 的异或边,它的费用为 i xor j。我们将 i xor j 拆成若干个 2 的幂之和,对应到图上,即将 i 到 j 的异或边拆成若干个费用为 2 的幂的边组成的路径。

    具体怎么搞呢?我们对于结点 i,只连出 i xor 2^0, i xor 2^1, ... 共 log 条边。这样, i 到 j 的最短路径就对应着原图中 i 到 j 的异或边。
    而边数降低为 O(nlog n + M) 条,就可以该怎么跑最短路就怎么跑(当然 SPFA 还是该怎么卡就怎么卡)。

    注意原本的点编号是 1~N,而新图必须拓展到 0~2^p (2^p > N) 拆位才不会拆出问题来。

    @accepted code@

    #include<cstdio>
    #include<queue>
    using namespace std;
    const int MAXN = 200000;
    const int MAXM = 500000;
    const int INF = (1<<30);
    struct edge{
    	int to, dis;
    	edge *nxt;
    }edges[MAXM + 20*MAXN + 5], *adj[MAXN + 5], *ecnt=&edges[0];
    void addedge(int u, int v, int w) {
    	edge *p = (++ecnt);
    	p->to = v, p->dis = w;
    	p->nxt = adj[u], adj[u] = p;
    }
    int dist[MAXN + 5], tot; bool vis[MAXN + 5];
    struct node{
    	int pos, dis;
    	node(int _p=0, int _d=0):pos(_p), dis(_d){}
    };
    bool operator < (node a, node b) {
    	return a.dis > b.dis;
    }
    priority_queue<node>que;
    void dijkstra(int S) {
    	que.push(node(S, 0));
    	for(int i=0;i<=tot;i++)
    		dist[i] = INF, vis[i] = false;
    	dist[S] = 0;
    	while( !que.empty() ) {
    		node t = que.top(); que.pop();
    		if( vis[t.pos] ) continue;
    		vis[t.pos] = true;
    		for(edge *p=adj[t.pos];p!=NULL;p=p->nxt) {
    			if( t.dis + p->dis < dist[p->to] ) {
    				dist[p->to] = t.dis + p->dis;
    				que.push(node(p->to, dist[p->to]));
    			}
    		}
    	}
    }
    int main() {
    	int N, M, A, B, C; scanf("%d%d%d", &N, &M, &C);
    	for(int i=1;i<=M;i++) {
    		int F, T, V;
    		scanf("%d%d%d", &F, &T, &V);
    		addedge(F, T, V);
    	}
    	scanf("%d%d", &A, &B);
    	for(tot = 1;tot <= N;tot <<= 1);
    	for(int i=0;i<tot;i++)
    		for(int p=1;p<tot;p<<=1)
    			addedge(i, i^p, p*C);
    	dijkstra(A); printf("%d
    ", dist[B]);
    }
    

    @details@

    自己在做这道题的时候,发现连续通过两条异或边是不优秀的,因为 (i xor j + j xor k) * C >= (i xor j xor j xor k) * C = (i xor k) * C。然后就顺着这个方向走了好久……
    好像有想到过拆位,然后一瞬间走神就忘记了……
    我太弱了 TAT。

  • 相关阅读:
    Matlab中如何取出cell型数组里的某一列,和具体某个值
    Matlab 读取dat文件(包含几行多余文本,数据带有数字和字符串,且以逗号分隔)
    批处理txt文件
    Word删除关键字所在行
    移动web页面前端开发总结
    JavaScript 的性能优化:加载和执行
    jq中prop和attr的区别以及各自的使用
    移动web开发经验总结(转)
    JavaScript核心(晋级高手必读篇)
    -webkit-transition: all .2s ease-in-out;
  • 原文地址:https://www.cnblogs.com/Tiw-Air-OAO/p/10213571.html
Copyright © 2011-2022 走看看