实现图像风格转换、神经风格图像的一些资料和实现。
1.原理篇
A.A Neural Algorithm of Artistic Style,风格迁移开山之作实现,对将固定风格迁移到固定内容上:
B.Perceptual Losses for Real-Time Style Transfer and Super-Resolution,预训练模型改进迁移速度,利用固定风格图像快速转换内容图像:
C.Meta Networks for Neural Style Transfer风格迁移原网络实现任意风格迁移网络的构建和快速风格化。
code:https://github.com/FalongShen/styletransfer
ref:
http://export.arxiv.org/abs/1811.08668(这篇文章的参考文献很好)
https://amds123.github.io/2018/11/21/Computational-Decomposition-of-Style-for-Controllable-and-Enhanced-Style-Transfer/
2.博客详解
ref:
各种融合项目总结https://blog.csdn.net/u014636245/article/details/85479698
3.参考项目总结
-
Keras Implementation of Neural Style Transfer from the paper:Neural-Style-Transfer & Neural Doodles
-
For the paperPerceptual Losses for Real-Time Style Transfer and Super-Resolution :fast-neural-style
realtime :
ref:https://blog.csdn.net/qq_40523737/article/details/83066107 from source: https://github.com/jcjohnson/fast-neural-style -
fast-neural-style-tensorflow, A tensorflow implementation for Perceptual Losses for Real-Time Style Transfer and Super-Resolution.
This code is based on Tensorflow-Slim and OlavHN/fast-neural-style.
web端实现ref:https://blog.csdn.net/pirage/article/details/86685963 -
Fritz Style Transfer,移动端的超小模型。
-
opencv 3.4集成的快速风格迁移实现, 以及Neural Style Transfer with OpenCV ,来自书:Deep Learning for Computer Vision with Python.
ref:https://blog.csdn.net/juebai123/article/details/86545556
ref移动端:https://github.com/fritzlabs/fritz-models
ref github search:https://github.com/search?o=desc&p=3&q=neural+style&s=stars&type=Repositories