zoukankan      html  css  js  c++  java
  • GPU使用

    GPU

    In [1]:
    import mxnet as mx
    from mxnet import nd
    from mxnet.gluon import nn
    
    In [2]:
    mx.cpu(),mx.gpu(),mx.gpu(1)
    
    Out[2]:
    (cpu(0), gpu(0), gpu(1))
    In [3]:
    x = nd.array([1,2,3])
    x
    
    Out[3]:
    [1. 2. 3.]
    <NDArray 3 @cpu(0)>
    In [4]:
    x.context
    
    Out[4]:
    cpu(0)
    In [5]:
    !nvidia-smi
    
     
    Wed Nov 28 15:42:11 2018       
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 384.90                 Driver Version: 384.90                    |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |===============================+======================+======================|
    |   0  TITAN X (Pascal)    Off  | 00000000:02:00.0 Off |                  N/A |
    | 33%   57C    P2    58W / 250W |   3467MiB / 12189MiB |      0%      Default |
    +-------------------------------+----------------------+----------------------+
    |   1  TITAN X (Pascal)    Off  | 00000000:03:00.0 Off |                  N/A |
    | 39%   63C    P2    63W / 250W |   1280MiB / 12189MiB |      0%      Default |
    +-------------------------------+----------------------+----------------------+
    |   2  TITAN X (Pascal)    Off  | 00000000:83:00.0 Off |                  N/A |
    | 44%   75C    P2    86W / 250W |   1320MiB / 12189MiB |      0%      Default |
    +-------------------------------+----------------------+----------------------+
    |   3  TITAN X (Pascal)    Off  | 00000000:84:00.0 Off |                  N/A |
    | 43%   74C    P2    84W / 250W |   1719MiB / 12189MiB |      8%      Default |
    +-------------------------------+----------------------+----------------------+
                                                                                   
    +-----------------------------------------------------------------------------+
    | Processes:                                                       GPU Memory |
    |  GPU       PID   Type   Process name                             Usage      |
    |=============================================================================|
    |    0      6577      C   python                                       209MiB |
    |    0      8489      C   python                                      2329MiB |
    |    0      9813      C   python                                       211MiB |
    |    0     29538      C   python                                       173MiB |
    |    1     17615      C   python                                       591MiB |
    |    1     31208      C   python                                       679MiB |
    |    2      6577      C   python                                       547MiB |
    |    2      9813      C   python                                       763MiB |
    |    3      6577      C   python                                       547MiB |
    |    3      9813      C   python                                       763MiB |
    |    3     15351      C   python                                       399MiB |
    +-----------------------------------------------------------------------------+
    
    In [6]:
    a = nd.array([1,2,3],ctx=mx.gpu())
    
    In [7]:
    a
    
    Out[7]:
    [1. 2. 3.]
    <NDArray 3 @gpu(0)>
    In [8]:
    b = nd.random.uniform(shape=(2,3),ctx=mx.gpu(1))
    b
    
    Out[8]:
    [[0.59119    0.313164   0.76352036]
     [0.9731786  0.35454726 0.11677533]]
    <NDArray 2x3 @gpu(1)>
    In [9]:
    a.context
    
    Out[9]:
    gpu(0)
    In [10]:
    b.context
    
    Out[10]:
    gpu(1)
    In [11]:
    y = x.copyto(mx.gpu())
    y
    
    Out[11]:
    [1. 2. 3.]
    <NDArray 3 @gpu(0)>
    In [12]:
    z = x.as_in_context(mx.gpu())
    z
    
    Out[12]:
    [1. 2. 3.]
    <NDArray 3 @gpu(0)>
    In [13]:
    y.as_in_context(mx.gpu()) is y
    
    Out[13]:
    True
    In [14]:
    y.copyto(mx.gpu()) is y
    
    Out[14]:
    False
    In [15]:
    z
    
    Out[15]:
    [1. 2. 3.]
    <NDArray 3 @gpu(0)>
    In [16]:
    y
    
    Out[16]:
    [1. 2. 3.]
    <NDArray 3 @gpu(0)>
    In [17]:
    (z + 2).exp()
    
    Out[17]:
    [ 20.085537  54.59815  148.41316 ]
    <NDArray 3 @gpu(0)>
    In [18]:
    (z+2).exp()*y
    
    Out[18]:
    [ 20.085537 109.1963   445.2395  ]
    <NDArray 3 @gpu(0)>
     

    gluon的GPU计算

    In [19]:
    net = nn.Sequential()
    
    In [20]:
    net.add(nn.Dense(1))
    
    In [21]:
    net.initialize(ctx=mx.gpu())
    
    In [22]:
    net(y)
    
    Out[22]:
    [[0.0068339 ]
     [0.01366779]
     [0.02050169]]
    <NDArray 3x1 @gpu(0)>
    In [23]:
    net[0].weight.data()
    
    Out[23]:
    [[0.0068339]]
    <NDArray 1x1 @gpu(0)>
    In [ ]:
     
  • 相关阅读:
    node generator 模仿co
    node-webkit 屏幕截图功能
    linux命令, cut,sort,wc,uniq,tee 说明
    linux命令,vim,vi 说明
    linux命令,tar,configure,make,make install,su 说明
    java高级工程师学习方向
    oracle: Rownum原理
    Win7 环境weblogic用户名和密码忘记解决方法
    struts原理介绍,面试
    JSP、servlet--学习摘要
  • 原文地址:https://www.cnblogs.com/TreeDream/p/10032524.html
Copyright © 2011-2022 走看看