zoukankan      html  css  js  c++  java
  • gluon 实现线性回归

    from mxnet import autograd, nd
    
    num_inputs = 2
    num_examples = 1000
    true_w = [2,-3.4]
    true_b = 4.2
    
    feature = nd.random.normal(scale=1,shape=(num_examples,num_inputs))
    labels = true_w[0]*feature[:,0] + true_w[1]*feature[:,1] + true_b
    #print(labels.shape) # 1000*1
    
    labels += nd.random.normal(scale=0.01,shape=labels.shape)
    print(labels)
    
    from mxnet.gluon import data as gdata
    
    batsh_size = 10
    # 组合训练的特征和标签
    dataset = gdata.ArrayDataset(feature,labels)
    # 随机读取小批量
    data_iter = gdata.DataLoader(dataset=dataset,batch_size=batsh_size,shuffle=True)
    
    for X,y in data_iter:
        print(X,y)
        break
    
    # 定义模型
    from mxnet.gluon import nn
    
    net = nn.Sequential()
    net.add(nn.Dense(1))
    
    # 初始化模型参数
    from mxnet import init
    net.initialize(init.Normal(sigma=0.01))
    
    # 定义损失函数
    from mxnet.gluon import loss as gloss
    loss = gloss.L2Loss()   # 平方损失
    
    # 优化算法,小批量随机梯度下降(sgd),使用Trainer实例
    # 该算法迭代net 所有通过add加进来的层所包含的参数,这些参数可以通过collect_params函数获取
    from mxnet import gluon
    trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.03})
    
    # 训练模型
    num_epochs = 3
    
    for epoch in range(1,num_epochs+1):
        for X,y in data_iter:
            with autograd.record():
                l = loss(net(X),y)
            l.backward()
            trainer.step(batsh_size)
        l = loss(net(feature),labels)
        print('epoch %d, loss: %f' %(epoch, l.mean().asnumpy()))
    
    # 从net中获取访问学习到的模型参数,权重(weight) 和偏差(bias)
    dense = net[0]
    print(true_w,dense.weight.data())
    print(true_b,dense.bias.data())

  • 相关阅读:
    反射式光电开关QRE1113
    labview程序性能优化
    labview中小黑点,小红点
    简述时钟周期、机器周期、指令周期的概念及三者之间的关系
    C++中的#和##运算符
    NTC与PTC压敏电阻在电源电路中起的作用
    常用DC-DC;AC-DC电源芯片
    PC817与TL431的配合电路探讨
    React入门
    WebRTC网关服务器单端口方案实现
  • 原文地址:https://www.cnblogs.com/TreeDream/p/10032783.html
Copyright © 2011-2022 走看看