看来一千个acmer有一千个迪杰斯特拉,Bellman-Ford也是一样。
看了刘汝佳的bellman-ford,简直和spfa一模一样啊!!!
松弛n -1 次还是可以松弛,说明有负环;
刘汝佳写得很有水平,学习了。每个点都有可能从这个点出发找到负环,都入队列,相互间分开,找第一个点,找到负边,入对列,原来的点出队列,下次有可能还用到; 该点不是最优的。要搜索该点。下次同等级别的点找到该点,就不用push到队列中了!!!
当下次还可以通过其他点松弛他cnt++;他又被松弛了;如果他被松弛了好多好多次(n-1);这样下去的只能说明一个问题:已经没有最短路,有的只是一个负圈;因为,既然可以通过好多好多点通过这个点继续找到更近的路,而这些点早可以够成了一条最短路了,什么情况这个点可以被松弛好多好多次呢,就是这个点存在于一个负圈里面,其他点到这个点转一圈 d 又减小了;
#include <bits/stdc++.h> using namespace std; const int maxn = 10000; struct Edge { int from,to; double dist; }; struct BellmanFord { int n, m; vector<Edge> edges; vector<int> G[maxn]; bool inq[maxn]; double d[maxn]; int p[maxn]; int cnt[maxn]; void init(int n) { this->n = n; for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, double dist) { edges.push_back((Edge) { from, to, dist }); m = edges.size(); G[from].push_back(m-1); } bool negativeCycle() { queue<int> Q; memset(inq, 0, sizeof(inq)); memset(cnt, 0, sizeof(cnt)); for(int i = 0; i < n; i++) { d[i] = 0; inq[0] = true; Q.push(i); } while(!Q.empty()) { int u = Q.front(); Q.pop(); inq[u] = false; for(int i = 0; i < G[u].size(); i++) { Edge& e = edges[G[u][i]]; if(d[e.to] > d[u] + e.dist) { d[e.to] = d[u] + e.dist; p[e.to] = G[u][i]; if(!inq[e.to]) { Q.push(e.to); inq[e.to] = true; if(++cnt[e.to] > n) return true; } } } } return false; } };