zoukankan      html  css  js  c++  java
  • hdu 1695 GCD(欧拉函数+容斥)

    Problem Description

    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
    2 

    1 3 1 5 1

    1 11014 1 14409 9
     Sample Output
    Case 1: 9 
    Case 2: 736427

    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     
    Source
     
    题意:给定a,b,c,d,k,要求从a到b选出一个数i,从b到d中选出一个数j,使得gcd(i,j)=k,求总方案数
     
    思路:

    第一个区间:[1,2,...,b/k] 第二个区间:[b/k+1,b/k+2,...,d/k]
    读第一个区间我们只要利用欧拉函数求质因数的个数即可,第二个区间我们任取x,
    要求[1,2,...,b/k]中所有与x互质的数的个数,这里我们用到容斥原理:先将x质因数分解,
    求得[1,2,...,b/k] 里所有能被x的质因数整除的数的个数,然后用b/k减去即可。

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 using namespace std;
     5 #define N 100006
     6 #define ll long long 
     7 ll a,b,c,d,k;
     8 ll fac[N];
     9 ll eular(ll n)
    10 {
    11     ll res=1;
    12     for(ll i=2;i*i<=n;i++)
    13     {
    14         if(n%i==0)
    15         {
    16             n/=i,res*=i-1;
    17             while(n%i==0)
    18             {
    19                 n/=i;
    20                 res*=i;
    21             }
    22         }
    23     }
    24     if(n>1)
    25        res*=n-1;
    26     return res;
    27 }
    28 ll solve()
    29 {
    30     ll ans=0;
    31     for(ll i=b+1;i<=d;i++)
    32     {
    33         ll n=i;
    34         ll num=0;
    35         ll cnt=0;
    36         for(ll j=2;j*j<=n;j++)
    37         {
    38             if(n%j==0)
    39             {
    40                 fac[num++]=j;
    41                 while(n%j==0)
    42                 {
    43                     n/=j;
    44                 }
    45             }
    46         }
    47         if(n>1) fac[num++]=n;
    48 
    49         for(ll j=1;j<(1<<num);j++)
    50         {
    51             ll tmp=1;
    52             ll sum=0;
    53             for(ll k=0;k<num;k++)
    54             {
    55                 if((1<<k)&j)
    56                 {
    57                     tmp*=fac[k];
    58                     sum++;
    59                 }
    60             }
    61             if(sum&1) cnt+=b/tmp;
    62             else cnt-=b/tmp;
    63         }
    64         ans=ans+b-cnt;
    65     }
    66     return ans;
    67 }
    68 int main()
    69 {
    70     int t;
    71     int ac=0;
    72     scanf("%d",&t);
    73     while(t--)
    74     {
    75         printf("Case %d: ",++ac);
    76         scanf("%I64d%I64d%I64d%I64d%I64d",&a,&b,&c,&d,&k);
    77         if(k==0)
    78         {
    79             printf("0
    ");
    80             continue;
    81         }
    82         if(b>d)
    83           swap(b,d);
    84         b/=k;
    85         d/=k;
    86         //printf("---%d %d
    ",b,d);
    87         ll ans=0;
    88         for(ll i=1;i<=b;i++)
    89         {
    90             ans+=eular(i);
    91         }
    92         //printf("-%d
    ",ans);
    93         ans=ans+solve();
    94         printf("%I64d
    ",ans);
    95     }
    96     return 0;
    97 }
    View Code
  • 相关阅读:
    团队展示
    平衡二叉树AVLTree
    红黑树原理
    日本楼市崩盘始末
    池化
    Spring配置多数据源
    关于C语言指针几个容易混淆的概念
    .net core 部署 Docker 所遇到的几个问题
    自定义类加载器也是无法实现加载java.lang.String的
    jquery轻量级数字动画插件jquery.countup.js
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4734907.html
Copyright © 2011-2022 走看看