zoukankan      html  css  js  c++  java
  • poj 2049 Let it Bead(polya模板)

     

    Description

    "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced. 
    
    A bracelet is a ring-like sequence of s beads each of which can have one of c distinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

    Input

    Every line of the input file defines a test case and contains two integers: the number of available colors c followed by the length of the bracelets s. Input is terminated by c=s=0. Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs<=32, i.e. their product does not exceed 32.

    Output

    For each test case output on a single line the number of unique bracelets. The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

    Sample Input

    1 1
    2 1
    2 2
    5 1
    2 5
    2 6
    6 2
    0 0

    Sample Output

    1
    2
    3
    5
    8
    13
    21

    Source

     
    非暴力,其实暴力和非暴力时间差不多
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<map>
     5 #include<set>
     6 #include<vector>
     7 using namespace std;
     8 #define ll long long
     9 ll pow_mod(ll a,ll i){
    10     if(i==0)
    11         return 1;
    12     ll t=pow_mod(a,i/2);
    13     ll ans=t*t;
    14     if(i&1)
    15         ans=ans*a;
    16     return ans;
    17 }
    18 
    19 vector<ll> divisor(ll n){
    20     vector<ll> res;
    21     for(ll i=1;i*i<=n;i++){
    22         if(n%i==0){
    23             res.push_back(i);
    24             if(i*i!=n){
    25                 res.push_back(n/i);
    26             }
    27         }
    28     }
    29     return res;
    30 }
    31 
    32 ll eular(ll n){
    33     ll res=1;
    34     for(ll i=2;i*i<=n;i++){
    35         if(n%i==0){
    36             n/=i,res*=i-1;
    37             while(n%i==0){
    38                 n/=i;
    39                 res*=i;
    40             }
    41         }
    42     }
    43     if(n>1) res*=n-1;
    44     return res;
    45 }
    46 
    47 ll polya(ll m,ll n){
    48     vector<ll> divs = divisor(n);
    49     ll res=0;
    50     for(ll i=0;i<divs.size();i++){
    51         ll euler=eular(divs[i]);
    52         res+=euler*pow_mod(m,n/divs[i]);
    53     }
    54     res/=n;
    55     return res;
    56 }
    57 
    58 int main()
    59 {
    60     ll n,m;
    61     while(scanf("%I64d%I64d",&m,&n)==2 && n+m!=0){
    62         ll ans=polya(m,n)*n;//旋转情况
    63         if(n&1){//奇数
    64             ans+=n*pow_mod(m,n/2+1);//翻转情况
    65         }
    66         else{//偶数
    67             ans += (pow_mod(m, n / 2 + 1) + pow_mod(m, n / 2)) * (n / 2);//翻转情况
    68         }
    69         ans/=2*n;
    70         printf("%I64d
    ",ans);
    71     }
    72     return 0;
    73 }
    View Code

    暴力枚举k

     1 #include <iostream>
     2 using namespace std;
     3  
     4 #define LL long long
     5  
     6 int gcd(int a, int b)
     7 {
     8     return b == 0 ? a : gcd(b, a % b);
     9 }
    10  
    11 LL power(LL p, LL n)
    12 {
    13     LL sum = 1;
    14     while (n)
    15     {
    16         if (n & 1)
    17             sum *= p;
    18         p *= p;
    19         n /= 2;
    20  
    21     }
    22     return sum;
    23 }
    24  
    25 ///////////////////////////SubMain//////////////////////////////////
    26 int main()
    27 {
    28 
    29     LL n; LL m;
    30     while (~scanf("%I64d%I64d", &m,&n) && n+m!=0)
    31     {
    32         LL count = 0;
    33         for (int i = 1; i <= n; ++i)
    34             count += power(m, gcd(i, n));
    35         if (n & 1)
    36             count += n * power(m, n / 2 + 1);
    37         else
    38             count += n / 2 * (power(m, n / 2 + 1) + power(m, n / 2));
    39         count /= n * 2;
    40         printf("%lld
    ", count);
    41     }
    42 
    43     return 0;
    44 }
    View Code
  • 相关阅读:
    51nod 1463 找朋友 (扫描线+线段树)
    51nod 1295 XOR key (可持久化Trie树)
    51nod 1494 选举拉票 (线段树+扫描线)
    51Nod 1199 Money out of Thin Air (树链剖分+线段树)
    51Nod 1287 加农炮 (线段树)
    51Nod 1175 区间中第K大的数 (可持久化线段树+离散)
    Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)
    前端基础了解
    git 教程
    HIVE 默认分隔符 以及linux系统中特殊字符的输入和查看方式
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4776588.html
Copyright © 2011-2022 走看看