zoukankan      html  css  js  c++  java
  • hdu 5606 tree(并查集)

    Problem Description
    There is a tree(the tree is a connected graph which contains n points and n1 edges),the points are labeled from 1 to n,which edge has a weight from 0 to 1,for every point i[1,n],you should find the number of the points which are closest to it,the clostest points can contain i itself.
     
    Input
    the first line contains a number T,means T test cases.
    for each test case,the first line is a nubmer n,means the number of the points,next n-1 lines,each line contains three numbers u,v,w,which shows an edge and its weight.
    T50,n105,u,v[1,n],w[0,1]
     
    Output
    for each test case,you need to print the answer to each point.
    in consideration of the large output,imagine ansi is the answer to point i,you only need to output,ans1 xor ans2 xor ans3.. ansn.
     
    Sample Input
    1 3 1 2 0 2 3 1
     
    Sample Output
    1 in the sample. $ans_1=2$ $ans_2=2$ $ans_3=1$ $2~xor~2~xor~1=1$,so you need to output 1.
     


     1 #pragma comment(linker, "/STACK:1024000000,1024000000")
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<cmath>
     6 #include<math.h>
     7 #include<algorithm>
     8 #include<queue>
     9 #include<set>
    10 #include<bitset>
    11 #include<map>
    12 #include<vector>
    13 #include<stdlib.h>
    14 using namespace std;
    15 #define ll long long
    16 #define eps 1e-10
    17 #define MOD 1000000007
    18 #define N 100006
    19 #define inf 1e12
    20 int n;
    21 int fa[N];
    22 int num[N];
    23 void init(){
    24     for(int i=0;i<N;i++){
    25         fa[i]=i;
    26     }
    27 }
    28 int find(int x){
    29     return fa[x]==x?x:fa[x]=find(fa[x]);
    30 }
    31 void merge(int x,int y){
    32     int root1=find(x);
    33     int root2=find(y);
    34     if(root1==root2) return;
    35     fa[root1]=root2;
    36 }
    37 int main()
    38 {
    39     int t;
    40     scanf("%d",&t);
    41     while(t--){
    42         init();
    43         scanf("%d",&n);
    44         for(int i=0;i<n-1;i++){
    45             int a,b,c;
    46             scanf("%d%d%d",&a,&b,&c);
    47             if(c==0){
    48                 merge(a,b);
    49             }
    50         }
    51         
    52         memset(num,0,sizeof(num));
    53         for(int i=1;i<=n;i++){
    54             int r=find(i);
    55             num[r]++;
    56         }
    57         int ans=0;
    58         for(int i=1;i<=n;i++){
    59             ans=(ans^num[find(i)]);
    60         }
    61         printf("%d
    ",ans);
    62     }
    63     return 0;
    64 }
    View Code
  • 相关阅读:
    appium知识01-环境设置
    移动端测试基础知识02
    魔术方法和反射
    面向对象开发: 封装, 继承, 多态
    正则的用法
    内置方法, 第三方模块(math, random, pickle, json, time, os, shutil, zip, tarfile), 导入包
    推导式(列表, 集合, 字典), 生成器
    迭代器, 高阶函数(map, filter, reduce, sorted) , 递归函数
    函数globals和locals用法, LEGB原则, 闭包函数 , 匿名函数
    字符串, 列表, 元祖, 集合, 字典的相关操作和函数, 深浅copy
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/5165013.html
Copyright © 2011-2022 走看看