zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 89 (Rated for Div. 2)

    Description

    给一个长度为(n)(a)数组与一个长度为(m)(b)数组,求把(a)数组划分为(m)段使得对每个(i)都有第(i)段最小值为(b_i)的方案数((mod) (998244353)

    Solution

    (f[i])表示(a)数组中划分到第(i)位(只考虑(a_i)(b)中某元素相等的(i)),(a_i)(b_k)相等,(a_i)为第(k)段最小值。
    转移是(f[i]+=f[j]*calc(j,i)),(a_j=b_{k-1}),(calc(j,i))计算的是将([j+1,i-1])中的元素分为两部分,满足前一部分属于第(k-1)段,后一部分属于第(k)段的可行方案数(仍保证第(k-1)段最小值为(a_j),第(k)段最小值为(a_i)
    发现方程中的(j)位置只需要取最靠后的满足(a_j=b_{k-1})的即可,因为在把([j+1,i-1])分为两半时,若中间有位置(m)满足(a_m=a_j),由于(a_m=a_j<a_i),位置(m)必被归类于第(k-1)段,那完全可以直接用位置(m)进行转移
    (好吧我承认思路有那么一点点奇怪(讲得似乎也有那么一点点奇怪),对比正解存在一定冗余。正解好像是(O(n)),我做法中离散化、预处理(ST)表都为(nlogn),计算(calc)用的是倍增或二分,计算一次是(logn)的复杂度,总复杂度(O(nlogn))。)

    Code

    #include <bits/stdc++.h>
     
    #define Mod 998244353
     
    using namespace std;
     
    typedef long long ll;
     
     
    inline int read() {
    	int out = 0;
    	bool flag = false;
    	register char cc = getchar();
    	while (cc < '0' || cc > '9') {
    		if (cc == '-') flag = true;
    		cc = getchar();
    	}
    	while (cc >= '0' && cc <= '9') {
    		out = (out << 3) + (out << 1) + (cc ^ 48);
    		cc = getchar();
    	}
    	return flag ? -out : out;
    } 
     
    inline void write(int x) {
    	if (x < 0) putchar('-'), x = -x;
    	if (x == 0) putchar('0');
    	else {
    		int num = 0;
    		char cc[20];
    		while (x) cc[++num] = x % 10 + 48, x /= 10;
    		while (num) putchar(cc[num--]);
    	}
    	putchar(' ');
    }
     
     
    int n, m, a[200010], b[200010], c[400010], pre[200010], lst[200010], tot, Log[200010], Min[20][200010], f[200010];
     
    inline int MIN(const int &l, const int &r) {
    	int t = Log[r - l + 1];
    	if (Min[t][l] < Min[t][r - (1 << t) + 1]) return Min[t][l];
    	else return Min[t][r - (1 << t) + 1];
    }
     
     
     
    inline int calc(const int &l, const int &r) {
    	int x = l, y = r;
    	for (int i = 18; i >= 0; i--)
    		if (x + (1 << i) < r && MIN(l, x + (1 << i)) >= a[l]) x += 1 << i;
    	for (int i = 18; i >= 0; i--)
    		if (y - (1 << i) > l && MIN(y - (1 << i), r) >= a[r]) y -= 1 << i;
    	if (x < y - 1) return 0;
    	return x - y + 2;
    }
     
     
    int main() {
    	n = read(), m = read();
    	for (int i = 1; i <= n; i++) c[++tot] = a[i] = read();
    	for (int i = 1; i <= m; i++) c[++tot] = b[i] = read();
    	sort(c + 1, c + tot + 1);
    	tot = unique(c + 1, c + tot + 1) - c - 1;
    	for (int i = 1; i <= n; i++) a[i] = lower_bound(c + 1, c + tot + 1, a[i]) - c;
    	for (int i = 1; i <= m; i++) b[i] = lower_bound(c + 1, c + tot + 1, b[i]) - c;
    	for (int i = 2; i <= n; i++) Log[i] = Log[i >> 1] + 1;
    	for (int i = 1; i <= n; i++) Min[0][i] = a[i];
    	for (int k = 1; (1 << k) <= n; k++) {
    		for (int i = 1; i + (1 << k) - 1 <= n; i++) {
    			if (Min[k - 1][i] < Min[k - 1][i + (1 << (k - 1))]) Min[k][i] = Min[k - 1][i];
    			else Min[k][i] = Min[k - 1][i + (1 << (k - 1))];
    		}
    	}
    	for (int i = 1; i <= m; i++) lst[b[i]] = b[i - 1];
    	int o = INT_MAX;
    	for (int i = 1; i <= n; i++) {
    		o = min(o, a[i]);
    		if (a[i] == b[1] && o == a[i]) f[i] = 1;
    	}
    	for (int i = 1; i <= n; i++) {
    		//cout << lst[a[i]] << ' ' << pre[lst[a[i]]] << endl;
    		if (!f[i]) f[i] = 1ll * f[pre[lst[a[i]]]] * calc(pre[lst[a[i]]], i) % Mod;
    		//cout << f[i] << endl;
    		pre[a[i]] = i;
    	}
    	int ans = 0;
    	for (int i = 1; i <= n; i++) if (a[i] == b[m] && MIN(i, n) >= a[i]) {
    		ans = f[i];
    		//if (ans >= Mod) ans -= Mod;
    	}
    	cout << ans << endl;
    	return 0;
    } 
    
  • 相关阅读:
    VS2012 未找到与约束ContractName Microsoft.VisualStudio.Text.ITextDocumentFactoryService
    什么是 Cookie
    Memcached的简介和使用
    visual studio 2012打开提示 未能将网站×××配置为使用 ASP.NET 4.5 和 尚未在Web服务器上注册,您需要手动将Web服务器配置为使用ASP.NET 4.5
    SQLServer中char、varchar、nchar、nvarchar的区别:
    Microsoft Visual Studio 2012旗舰版(VS2012中文版下载)官方中文版
    C#操作sql通用类 SQLHelper
    用C#写入Excel表并保存
    C# TreeView 控件的综合使用方法
    ADODB.Connection、ADODB.RecordSet
  • 原文地址:https://www.cnblogs.com/Urushibara-Ruka/p/13121615.html
Copyright © 2011-2022 走看看