zoukankan      html  css  js  c++  java
  • 牛客多校第二场 B Boundary

    牛客多校第二场 B

    链接:https://ac.nowcoder.com/acm/contest/5667/B

    题目描述

    Given (n) points in 2D plane. Considering all circles that the origin point ((0, 0)) is on their boundries, find the one with the maximum given points on its boundry. Print the maximum number of points.

    输入描述:

    The first line contains one integer (n~(1 leq n leq 2000)) , denoting the number of given points.
    Following (n) lines each contains two integers (x, y~(|x|,|y| leq 10000)), denoting a given point ((x, y)).
    It's guaranteed that the points are pairwise different and no given point is the origin point.

    输出描述:

    Only one line containing one integer, denoting the answer.

    输入

    4
    1 1
    0 2
    2 0
    2 2
    

    输出

    3
    

    说明

    Considering circle ((x-1)^2+(y-1)^2=2), we can see that the origin point is on its boundry and that there are (3) given points ({(0,2),(2,0),(2,2)}) on its boundry.

    img

    题解

    题意

    在一个二维平面中,给 (n) 个点,以 ((x,y)) 为圆心的圆经过 ((0,0)) 点,问,这个圆在这 (n) 个点中最多能经过多少个点。

    思路

    对于两个不同的点 ((a_i,b_i))((a_j,b_j)) ,还有额外加的一个 ((0,0)) 点在三点不共线的条件下,一定可以确定一个圆,并且可以求出圆心,

    [(x-a_i)^2+(y-b_i)^2=x^2+y^2 \ (x-a_j)^2+(y-b_j)^2=x^2+y^2 \ (x-a_i)^2+(y-b_i)^2=(x-a_j)^2+(y-b_j)^2 ]

    化简式子,可以得到一个关于 $x,y $ 的方程组

    [y=a_j(a_i^2+b_i^2)-a_i(a_j^2+b_j^2)/(2(b_ia_j-a_ib_j)) \ y=b_j(a_i^2+b_i^2)-b_i(a_j^2+b_j^2)/(2(b_ia_j-a_ib_j)) ]

    之后进行求解储存数据即可。

    注意

    • (map) 会卡 (tle)
    • 卡精度,能不使用 (double) 尽量不要使用 (double)
    • 当三点共线时,不进行考虑

    代码

    #pragma GCC optimize(3)
    #include <cmath>
    #include <vector>
    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    const int maxn = 2e3+55;
    const double eps = 1e-7;
    struct Point{double x,y;};
    bool cmp(Point x,Point y){if(eps>fabs(x.x-y.x))return x.y<y.y;return x.x<y.x;}
    struct node{ll a,b;ll aa,bb;}nn[maxn];
    vector<Point>v;
    int main(){
        int n;
        int maxxx=0;
        scanf("%d",&n);
        if(n==1){printf("1
    ");return 0;}
        for(int i=0;i<n;++i){
            v.clear();
            scanf("%lld%lld",&nn[i].a,&nn[i].b);
            nn[i].aa=nn[i].a*nn[i].a;
            nn[i].bb=nn[i].b*nn[i].b;
            for(int j=0;j<i;++j){
                if(nn[i].b*nn[j].a==nn[j].b*nn[i].a)continue;
                ll yx=nn[j].a*(nn[i].aa+nn[i].bb)-nn[i].a*(nn[j].aa+nn[j].bb);
                ll yy=(ll)2*(nn[i].b*nn[j].a-nn[j].b*nn[i].a);
                ll xx=nn[j].b*(nn[i].aa+nn[i].bb)-nn[i].b*(nn[j].aa+nn[j].bb);
                ll xy=-yy;
                v.push_back({(double)xx/xy,(double)yx/yy});
            }
            int maxx=0,ans=1;
            sort(v.begin(),v.end(),cmp);
            for(int j=1;j<(int)v.size();++j){
                if(fabs(v[j].y-v[j-1].y)<eps&&fabs(v[j].x-v[j-1].x)<eps)ans++;
                else ans=1;
                maxx=max(maxx,ans);
            }
            maxxx=max(maxxx,maxx+1);
        }
        printf("%d
    ",maxxx);
        return 0;
    }
    
    新赛季的开始
  • 相关阅读:
    rand()和srand()
    advanced regression to predict housing prices
    数学建模
    python的对数
    八月总结——人工智能初学者
    看到的不错的项目
    学习笔记(七): Logistic Regression
    学习笔记(六): Regularization for Simplicity
    An Intuitive Explanation of Convolutional Neural Networks
    CentOS7的mysql5.7-rpm.bundle方式安装
  • 原文地址:https://www.cnblogs.com/VagrantAC/p/13295083.html
Copyright © 2011-2022 走看看