zoukankan      html  css  js  c++  java
  • [学习笔记] 杜教筛

    暑期的学习开始了,今天先来讲一下杜教筛吧(反演的坑以后再填。。。

    核心公式:

    我们设(egin{aligned}S(n)=sum_{i=1}^{n}(f * g)_ {(i)}end{aligned}),且(g)为一个完全积性函数。

    那么可以得到:

    (egin{aligned}sum_{i=1}^n((f* 1)_ {(i)} imes g)=sum_{i=1}^ng(i) imes S(lfloorfrac n i floor)end{aligned})

    证明:

    (egin{aligned}sum_{i=1}^n((f* 1)_ {i} imes g)&=sum_{i=1}^ng(i) imessum_{d|i}f(d)\&=sum_{d=1}^nsum_{i=1}^{lfloorfrac n d floor}g(id) imes f(d)\&=sum_{d=1}^ng(i) imes g(d) imes f(d)\&=sum_{d=1}^ng(d) imes S(lfloorfrac n d floor)end{aligned})

    证毕

    具体实现:

    • (mu)函数求前缀和:

      根据(mu* 1=epsilon),将(epsilon)作为(S)(mu)作为(f)(1)作为(g)代入上述公式,得到:(egin{aligned}sum_{i=1}^nepsilon(i)=sum_{d=1}^n1(d) imes S(lfloorfrac n d floor)end{aligned})

      (d=1)拿出来,再化简得:(egin{aligned}1=S(n)+sum_{d=2}^nS(lfloorfrac n d floor)end{aligned})

      移个项,得:(egin{aligned}S(n)=1-sum_{d=2}^nS(lfloorfrac n d floor)end{aligned})

    • (varphi)函数求前缀和:

      根据(varphi* 1=id)得到:

      (egin{aligned}S(n)=frac{n imes(n+1)}{2}+sum_{d=2}^nS(lfloorfrac n d floor)end{aligned})

  • 相关阅读:
    每日签到
    手机刮刮卡
    js随机更换
    jquery实现input输入框实时输入触发事件代码
    webAPP前端必备知识
    让你分分钟学会 JS 闭包
    js获取url?后的参数
    js获取上传的文件名
    Javascript 中神奇的 this
    由浅入深完全掌握Ajax
  • 原文地址:https://www.cnblogs.com/WR-Eternity/p/11153806.html
Copyright © 2011-2022 走看看