zoukankan      html  css  js  c++  java
  • Machine Schedule POJ

    Machine Schedule
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 17457   Accepted: 7328

    Description

    As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem. 

    There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0. 

    For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y. 

    Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines. 

    Input

    The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y. 

    The input will be terminated by a line containing a single zero. 

    Output

    The output should be one integer per line, which means the minimal times of restarting machine.

    Sample Input

    5 5 10
    0 1 1
    1 1 2
    2 1 3
    3 1 4
    4 2 1
    5 2 2
    6 2 3
    7 2 4
    8 3 3
    9 4 3
    0
    

    Sample Output

    3

    Source

     
    解析:
      不知道这题我为什么没想出来怎么建边。。。菜死我算了 emm。。
      就是求最小点集覆盖
      匈牙利即可  这里用的dinic
      
    #include <iostream>
    #include <cstdio>
    #include <sstream>
    #include <cstring>
    #include <map>
    #include <cctype>
    #include <set>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <algorithm>
    #include <cmath>
    #include <bitset>
    #define rap(i, a, n) for(int i=a; i<=n; i++)
    #define rep(i, a, n) for(int i=a; i<n; i++)
    #define lap(i, a, n) for(int i=n; i>=a; i--)
    #define lep(i, a, n) for(int i=n; i>a; i--)
    #define rd(a) scanf("%d", &a)
    #define rlld(a) scanf("%lld", &a)
    #define rc(a) scanf("%c", &a)
    #define rs(a) scanf("%s", a)
    #define rb(a) scanf("%lf", &a)
    #define rf(a) scanf("%f", &a)
    #define pd(a) printf("%d
    ", a)
    #define plld(a) printf("%lld
    ", a)
    #define pc(a) printf("%c
    ", a)
    #define ps(a) printf("%s
    ", a)
    #define MOD 2018
    #define LL long long
    #define ULL unsigned long long
    #define Pair pair<int, int>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define _  ios_base::sync_with_stdio(0),cin.tie(0)
    //freopen("1.txt", "r", stdin);
    using namespace std;
    const int maxn = 1e5 + 10, INF = 0x7fffffff;
    int n, m, s, t, k;
    int head[maxn], cur[maxn], d[maxn], vis[maxn], cnt;
    int nex[maxn << 1];
    struct node
    {
        int u, v, c;
    }Node[maxn << 1];
    
    
    void add_(int u, int v, int c)
    {
        Node[cnt].u = u;
        Node[cnt].v = v;
        Node[cnt].c = c;
        nex[cnt] = head[u];
        head[u] = cnt++;
    }
    
    void add(int u, int v, int c)
    {
        add_(u, v, c);
        add_(v, u, 0);
    }
    
    bool bfs()
    {
        queue<int> Q;
        mem(d, 0);
        d[s] = 1;
        Q.push(s);
        while(!Q.empty())
        {
            int u = Q.front(); Q.pop();
            for(int i = head[u]; i != -1; i = nex[i])
            {
                int v = Node[i].v;
                if(!d[v] && Node[i].c > 0)
                {
                    d[v] = d[u] + 1;
                    Q.push(v);
                    if(v == t) return 1;
                }
            }
        }
        return d[t] != 0;
    }
    
    int dfs(int u, int cap)
    {
        int ret = 0;
        if(u == t || cap == 0)
            return cap;
        for(int &i = cur[u]; i != -1; i = nex[i])
        {
            int v = Node[i].v;
            if(d[v] == d[u] + 1 && Node[i].c > 0)
            {
                int V = dfs(v, min(cap, Node[i].c));
                Node[i].c -= V;
                Node[i ^ 1].c += V;
                ret += V;
                cap -= V;
                if(cap == 0) break;
            }
        }
        if(cap > 0) d[u] = -1;
        return ret;
    }
    
    int Dinic(int u)
    {
        int ans = 0;
        while(bfs())
        {
            memcpy(cur, head, sizeof(head));
            ans += dfs(u, INF);
        }
        return ans;
    }
    
    int main()
    {
        while(scanf("%d", &n) != EOF && n)
        {
            rd(m), rd(k);
            int a, b, c;
            mem(head, -1);
            cnt = 0;
            s = 0, t = n + m + 1;
            rap(i, 1, k)
            {
                rd(a), rd(b), rd(c);
                b++, c++;
                if(b != 1 && c != 1)
                    add(b, n + c, 1);
            }
            rap(i, 1, n)
                add(s, i, 1);
            rap(i, 1, m)
                add(n + i, t, 1);
            cout << Dinic(s) << endl;
        }
    
    
        return 0;
    }
    Machine Schedule
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 17457   Accepted: 7328

    Description

    As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem. 

    There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0. 

    For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y. 

    Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines. 

    Input

    The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y. 

    The input will be terminated by a line containing a single zero. 

    Output

    The output should be one integer per line, which means the minimal times of restarting machine.

    Sample Input

    5 5 10
    0 1 1
    1 1 2
    2 1 3
    3 1 4
    4 2 1
    5 2 2
    6 2 3
    7 2 4
    8 3 3
    9 4 3
    0
    

    Sample Output

    3

    Source

    自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
  • 相关阅读:
    pat 1027. Colors in Mars (20)
    pat 1035. Password (20)
    pat 1006. Sign In and Sign Out (25)
    pat 1031. Hello World for U (20)
    pat 1005. Spell It Right (20)
    pat 1002. A+B for Polynomials (25)
    pat 1008. Elevator (20)
    pat 1001. A+B Format (20)
    算法分析与设计实验四 密码算法
    Android通讯录管理(获取联系人、通话记录、短信消息)
  • 原文地址:https://www.cnblogs.com/WTSRUVF/p/9969256.html
Copyright © 2011-2022 走看看