笛卡儿叶形线是一个代数曲线,首先由笛卡儿在1638年提出。
直角坐标系:x^3+y^3=3axy
极坐标系:r=(3asin(θ)cos(θ))/(sin(θ)^3+cos(θ)^3)
参数方程:
x=3at/(1+t^3)
y=3at^2/(1+t^3)
其中, t=tan(θ)
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815
vertices = 1000 t = from 0 to (PI) a = rand2(0.1, 10.0) s = sin(t) c = cos(t) p = a*3*s*c/ (c^3 + s^3) x = p*sin(t) y = p*cos(t) x = limit(x, -25, 25) y = limit(y, -25, 25)
笛卡儿叶形面
vertices = D1:1000 D2:100 u = from 0 to (PI) D1 v = from 0.1 to (15.0) D2 s = sin(u) c = cos(u) p = v*3*s*c/ (c^3 + s^3) x = p*sin(u) y = p*cos(u) x = limit(x, -25, 25) y = limit(y, -25, 25)
有一种与 笛卡儿叶形线相似的曲线为:
三等分曲线(trisectrix)
vertices = 1000 t = from (-PI) to (PI) a = 5 p = a*(1+2*cos(2*t))/cos(t) x = p*sin(t) y = p*cos(t) x = limit(x, -50, 50) y = limit(y, -50, 50)