zoukankan      html  css  js  c++  java
  • 数学图形(1.21)蚌线

    过定点O的直线交不过O的定直线l(l与O的距离为a)于Q,在OQ上取P,使|QP|=b(b是常数),则P的轨迹称为蚌线。

    古希腊数学家尼科梅德斯(也有些书上译成尼科米德)在研究几何三大作图问题时,发现这种蚌线。他还发明了绘制蚌线的仪器。

    蚌线有内外两支。
    a和b的大小关系,蚌线有三种不同形态。

    极坐标方程:
    ρ = a ± b secθ
    a、b为实数
    -π / 2 ≤ θ ≤ π / 2时,
    ρ = a + b secθ表示蚌线的外支,又叫做外蚌线;
    ρ = a –b secθ表示蚌线的内支,又叫做内蚌线。
    相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815

    蚌线(加)

    vertices = 1000
    
    t = from (-PI*0.49) to (PI*0.49)
    a = rand2(0.1, 10.0)
    b = rand2(0.1, 10.0)
    
    p = a + b*sec(t);
    
    x = p*sin(t)
    y = p*cos(t)
    
    x = limit(x, -25, 25)
    y = limit(y, -25, 25)

    蚌线(减)

    vertices = 1000
    
    t = from (-PI*0.49) to (PI*0.49)
    a = rand2(0.1, 10.0)
    b = rand2(0.1, 10.0)
    
    p = a - b*sec(t);
    
    x = p*sin(t)
    y = p*cos(t)
    
    x = limit(x, -25, 25)
    y = limit(y, -25, 25)

    蚌面(加)

    vertices = D1:512 D2:100
    
    u = from (-PI*0.49) to (PI*0.49) D1
    v = from 0.01 to 10.0 D2
    
    a = 1.0
    p = a + v*sec(u);
    
    x = p*sin(u)
    y = p*cos(u)
    
    x = limit(x, -25, 25)
    y = limit(y, -25, 25)

    蚌面(减)

    vertices = D1:512 D2:100
    
    u = from (-PI*0.49) to (PI*0.49) D1
    v = from 0.01 to 10.0 D2
    
    a = 1.0
    p = a - v*sec(u);
    
    x = p*sin(u)
    y = p*cos(u)
    
    x = limit(x, -25, 25)
    y = limit(y, -25, 25)

  • 相关阅读:
    LeetCode-Minimum Path Sum
    LeetCode-Validate Binary Search Tree
    LeetCode-Recover Binary Search Tree
    LeetCode-Valid Parentheses
    LeetCode-Generate Parentheses
    LeetCode-4Sum
    BZOJ 2295: [POJ Challenge]我爱你啊
    BZOJ 2725: [Violet 6]故乡的梦
    BZOJ 3672: [Noi2014]购票
    BZOJ 4327:[JSOI2012]玄武密码
  • 原文地址:https://www.cnblogs.com/WhyEngine/p/3831257.html
Copyright © 2011-2022 走看看