过定点O的直线交不过O的定直线l(l与O的距离为a)于Q,在OQ上取P,使|QP|=b(b是常数),则P的轨迹称为蚌线。
古希腊数学家尼科梅德斯(也有些书上译成尼科米德)在研究几何三大作图问题时,发现这种蚌线。他还发明了绘制蚌线的仪器。
蚌线有内外两支。
a和b的大小关系,蚌线有三种不同形态。
极坐标方程:
ρ = a ± b secθ
a、b为实数
-π / 2 ≤ θ ≤ π / 2时,
ρ = a + b secθ表示蚌线的外支,又叫做外蚌线;
ρ = a –b secθ表示蚌线的内支,又叫做内蚌线。
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815
蚌线(加)
vertices = 1000 t = from (-PI*0.49) to (PI*0.49) a = rand2(0.1, 10.0) b = rand2(0.1, 10.0) p = a + b*sec(t); x = p*sin(t) y = p*cos(t) x = limit(x, -25, 25) y = limit(y, -25, 25)
蚌线(减)
vertices = 1000 t = from (-PI*0.49) to (PI*0.49) a = rand2(0.1, 10.0) b = rand2(0.1, 10.0) p = a - b*sec(t); x = p*sin(t) y = p*cos(t) x = limit(x, -25, 25) y = limit(y, -25, 25)
蚌面(加)
vertices = D1:512 D2:100 u = from (-PI*0.49) to (PI*0.49) D1 v = from 0.01 to 10.0 D2 a = 1.0 p = a + v*sec(u); x = p*sin(u) y = p*cos(u) x = limit(x, -25, 25) y = limit(y, -25, 25)
蚌面(减)
vertices = D1:512 D2:100 u = from (-PI*0.49) to (PI*0.49) D1 v = from 0.01 to 10.0 D2 a = 1.0 p = a - v*sec(u); x = p*sin(u) y = p*cos(u) x = limit(x, -25, 25) y = limit(y, -25, 25)