题目:传送门
题意:给 n 个点,用矩阵将所有点覆盖,要求矩形宽度最小,输出宽度。
思路:
参考自 -> 戳
旋转卡壳 + 点到直线最短距离
最远距离是点到点;宽度是点到边。
#include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #include <map> #include <vector> #include <set> #include <string> #include <math.h> #define LL long long #define mem(i, j) memset(i, j, sizeof(i)) #define rep(i, j, k) for(int i = j; i <= k; i++) #define dep(i, j, k) for(int i = k; i >= j; i--) #define pb push_back #define make make_pair #define INF INT_MAX #define inf LLONG_MAX #define PI acos(-1) using namespace std; const int N = 5e5 + 5; struct Point { LL x, y; Point(LL x = 0, LL y = 0) : x(x), y(y) { } /// 构造函数 }; typedef Point Vector; /// 向量+向量=向量, 点+向量=向量 Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } ///点-点=向量 Vector operator - (Point A, Point B) { return Vector(A.x - B.x, A.y - B.y); } ///向量*数=向量 Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); } ///向量/数=向量 Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); } const double eps = 1e-8; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator < (const Point& a, const Point& b) { return a.x == b.x ? a.y < b.y : a.x < b.x; } bool operator == (const Point& a, const Point &b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } LL Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } /// 点积 double Length(Vector A) { return sqrt(1.0 * Dot(A, A)); } /// 计算向量长度 double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } /// 向量A、B夹角 LL Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } /// 叉积 Point P[N], Q[N]; int ConvexHull(Point* p, int n, Point* ch) { sort(p, p + n); int m = 0; rep(i, 0, n - 1) { while(m > 1 && Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0) m--; ch[m++] = p[i]; } int k = m; dep(i, 0, n - 2) { while(m > k && Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } void GetMax(int n) { if(n == 2) { printf("%.16f ", Length(Q[1] - Q[0])); return ; } // cout << n << endl; double ans=123456789009876; int now = 1; rep(i, 0, n - 2){ while(abs(Cross(Q[i + 1] - Q[i], Q[now] - Q[i])) < abs(Cross(Q[i + 1] - Q[i], Q[now + 1] - Q[i]))){ now++; if(now == n - 1) now = 0; } double tmp=fabs(1.0 * Cross(Q[i + 1] - Q[i], Q[now] - Q[i])); tmp /= Length(Q[i] - Q[i + 1]); ans=min(ans,tmp); } printf("%.16f ", ans); } int main() { int n; double r; scanf("%d %lf", &n, &r); rep(i, 0, n - 1) scanf("%lld %lld", &P[i].x, &P[i].y); if(n == 2) { printf("%.16f ", Length(P[0] - P[1])); } else { n = ConvexHull(P, n, Q); Q[n++] = Q[0]; /// 免得取模 GetMax(n); } return 0; }